272 research outputs found

    Geometric Numerical Integration Applied to The Elastic Pendulum at Higher Order Resonance

    Get PDF
    In this paper we study the performance of a symplectic numerical integrator based on the splitting method. This method is applied to a subtle problem i.e. higher order resonance of the elastic pendulum. In order to numerically study the phase space of the elastic pendulum at higher order resonance, a numerical integrator which preserves qualitative features after long integration times is needed. We show by means of an example that our symplectic method offers a relatively cheap and accurate numerical integrator.Comment: 15 pages, 6 figure

    Symmetric spaces and Lie triple systems in numerical analysis of differential equations

    Get PDF
    A remarkable number of different numerical algorithms can be understood and analyzed using the concepts of symmetric spaces and Lie triple systems, which are well known in differential geometry from the study of spaces of constant curvature and their tangents. This theory can be used to unify a range of different topics, such as polar-type matrix decompositions, splitting methods for computation of the matrix exponential, composition of selfadjoint numerical integrators and dynamical systems with symmetries and reversing symmetries. The thread of this paper is the following: involutive automorphisms on groups induce a factorization at a group level, and a splitting at the algebra level. In this paper we will give an introduction to the mathematical theory behind these constructions, and review recent results. Furthermore, we present a new Yoshida-like technique, for self-adjoint numerical schemes, that allows to increase the order of preservation of symmetries by two units. Since all the time-steps are positive, the technique is particularly suited to stiff problems, where a negative time-step can cause instabilities
    • …
    corecore