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Abstract

In this paper we study the performance of a symplectic numerical integrator

based on the splitting method� This method is applied to a subtle problem i�e�

higher order resonance of the elastic pendulum� In order to numerically study the

phase space of the elastic pendulum at higher order resonance� a numerical integrator

which preserves qualitative features after long integration times is needed� We show

by means of an example that our symplectic method o�ers a relatively cheap and

accurate numerical integrator�
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� Introduction

Higher order resonances are known to have a long time�scale behaviour� From an asymp�
totic point of view� a �rst order approximation �such as �rst order averaging� would not
be able to clarify the interesting dynamics in such a system� Numerically� this means that
the integration times needed to capture such behaviour are signi�cantly increased� In this
paper we present a reasonably cheap method to achieve a qualitatively good result even
after long integration times�
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Geometric numerical integration methods for �ordinary� di�erential equations �	
� ���
��� have emerged in the last decade as alternatives to traditional methods �e�g� Runge�
Kutta methods�� Geometric methods are designed to preserve certain properties of a given
ODE exactly �i�e� without truncation error�� The use of geometric methods is particu�
larly important for long integration times� Examples of geometric integration methods
include symplectic integrators� volume�preserving integrators� symmetry�preserving inte�
grators� integrators that preserve �rst integrals �e�g� energy�� Lie�group integrators� etc�
A survey is given in 	���
It is well known that resonances play an important role in determining the dynamics

of a given system� In practice� higher order resonances occur more often than lower order
ones� but their analysis is more complicated� In 	�
� Sanders was the �rst to give an upper
bound on the size of the resonance domain �the region where interesting dynamics takes
place� in two degrees of freedom Hamiltonian systems� Numerical studies by van den Broek
	��� however� provided evidence that the resonance domain is actually much smaller� In
	��� Tuwankotta and Verhulst derived improved estimates for the size of the resonance
domain� and provided numerical evidence that for the � � � and the � � � resonances of
the elastic pendulum� their estimates are sharp� The numerical method they used in their
analysis �� however� was not powerful enough to be applied to higher order resonances� In
this paper we construct a symplectic integration method� and use it to show numerically
that the estimates of the size of the resonance domain in 	�� are also sharp for the � � �
and the � � � resonances�
Another subtle problem regarding to this resonance manifold is the bifurcation of this

manifold as the energy increases� To study this problem numerically one would need a
numerical method which is reasonably cheap and accurate after a long integration times�
In this paper we will use the elastic pendulum as an example� The elastic pendulum

is a well known �classical� mechanical problem which has been studied by many authors�
One of the reasons is that the elastic pendulum can serve as a model for many problems
in di�erent �elds� See the references in 	�� ��� In itself� the elastic pendulum is a very
rich dynamical system� For di�erent resonances� it can serve as an example of a chaotic
system� an auto�parametric excitation system �	���� or even a linearizable system� The
system also has �discrete� symmetries which turn out to cause degeneracy in the normal
form�
We will �rst give a brief introduction to the splitting method which is the main ingre�

dient for the symplectic integrator in this paper� We will then collect the analytical results
on the elastic pendulum that have been found by various authors� Mostly� in this paper we
will be concerned with the higher order resonances in the system� All of this will be done
in the next two sections of the paper� In the fourth section we will compare our symplectic
integrator with the standard ��th order Runge�Kutta method and also with an order �� �
Runge�Kutta method� We end the fourth section by calculating the size of the resonance
domain of the elastic pendulum at higher order resonance�

�A Runge�Kutta method of order �� �






� Symplectic Integration

Consider a symplectic space � � R�n� n � N where each element � in � has coordinate
�q�p� and the symplectic form is dq � dp� For any two functions F�G � C���� de�ne

fF�Gg �
nX
�

�
�F

�qj

�G

�pj
� �G

�qj

�F

�pj

�
� C�����

which is called the Poisson bracket of F and G� Every function H � C���� generates a
�Hamiltonian� vector �eld de�ned by fqi�Hg� fpi�Hg� i � �� � � � � n� The dynamics of H is
then governed by the equations of motion of the form

�qi �fqi�Hg
�pi �fpi�Hg� i � �� � � � � n�

Let X and Y be two Hamiltonian vector �elds� de�ned in �� associated with Hamiltonians
HX and HY in C���� respectively� Consider another vector �eld 	X�Y  which is just the
commutator of the vector �elds X and Y � Then 	X�Y  is also a Hamiltonian vector �eld
with Hamiltonian H�X�Y � � fHX �HY g� See for example 	�� �� �� for details�
We can write the �ow of the Hamiltonian vector �elds X as

�X�t � exp�tX� � I � tX �
�


�
�tX�� �

�

��
�tX�� � � � �

�and so does the �ow of Y �� By the BCH formula� there exists a �formal� Hamiltonian
vector �eld Z such that

Z � �X � Y � �
t



	X�Y  �

t�

�

�	X�X� Y  � 	Y� Y�X� �O�t�� ���

and exp�tZ� � exp�tX�exp�tY �� where 	X�X� Y  � 	X� 	X�Y  � and so on� Moreover�
Yoshida �in 	��� shows that exp�tX�exp�tY �exp�tX� � exp�tZ�� where

Z � �
X � Y � �
t�

�
�	Y� Y�X� 	X�X� Y � �O�t��� �
�

We note that in terms of the �ow� the multiplication of the exponentials above means
composition of the corresponding �ow� i�e� �Y �t � �X�t�
Let � � R be a small positive number and consider a Hamiltonian system with Hamil�

tonian H��� � HX��� � HY ���� where � � �� and �� � X � Y � Using ��� we have that
�Y �� � �X�� is �approximately� the �ow of a Hamiltonian system

�� � �X � Y � �
�



	X�Y  �

� �

�

�	X�X� Y  � 	Y� Y�X� �O�� ���

with Hamiltonian

H� � HX �HY �
�



fHX�HY g� � �

�

�fHX�HX�HY g� fHY �HY �HXg� �O�� ���

�



Note that fH�K�Fg � fH� fK�Fgg� This mean that H �H� � O�� � or� in other words

�Y �� � �X�� � �X�Y �� � �O�� ��� ���

As before and using �
�� we conclude that

�X� �
�
� �Y �� � �X� �

�
� �X�Y �� � �O�� ��� ���

Suppose that �X�� and �Y �� are numerical integrators of system �� � X and �� � Y
�respectively�� We can use symmetric composition �see 	�� to improve the accuracy of
�X�Y �� � If �Y �� and �X�� are symplectic� then the composition forms a symplectic numerical
integrator for X � Y � See 	�� for more discussion� also 	�� for references� If we can split
H into two �or more� parts which Poisson commute with each other �i�e� the Poisson
brackets between each pair vanish�� then we have H � H� � This implies that in this case
the accuracy of the approximation depends only on the accuracy of the integrators for X
and Y � An example of this case is when we are integrating the Birkho� normal form of a
Hamiltonian system�

� The Elastic Pendulum

Consider a spring with spring constant s and length l� to which a mass m is attached� Let
g be the gravitational constant and l the length of the spring under load in the vertical
position� and let r be the distance between the mass m and the suspension point� The
spring can both oscillate in the radial direction and swing like a pendulum� This is called
the elastic pendulum� See Figure ��� for illustration and 	�� �or 	��� for references�

������������
������������
������������
������������

Figure �� The elastic pendulum�

The phase space is R� with canonical coordinate � � �z� �� pz� p��� where z � �r�l���l��
Writing the linear frequencies of the Hamiltonian as �z �

p
s�m and �� �

p
g�l� the

�



Hamiltonian of the elastic pendulum becomes

H �
�


	

�
p�z �

p��
�z � ���

�
�
	



�z

�

�
z �

�
��

�z

��
��

� 	��
��z � �� cos�� ���

where 	 � ml�� By choosing the right physical dimensions� we can scale out 	� We remark
that for the elastic pendulum as illustrated in Figure �� we have �z � ��� See 	�� for
details� It is clear that this system possesses symmetry

T � �z� �� pz� p�� t� �	 �z���� pz��p�� t� ���

and the reversing symmetries

R� � �z� �� pz� p�� t� �	 �z� ���pz��p���t��
R� � �z� �� pz� p�� t� �	 �z�����pz� p���t�� ���

If there exist two integers k� and k� such that k��z � k��� � �� then we say �z and ��

are in resonance� Assuming �jk�j� jk�j� � �� we can divide the resonances in two types� e�g�
lower order resonance if jk�j� jk�j 
 � and higher order resonance if jk�j� jk�j 
 �� In the
theory of normal forms� the type of normal form of the Hamiltonian is highly dependent
on the type of resonance in the system� See 	��
In general� the elastic pendulum has at least one �xed point which is the origin of

phase space� This �xed point is elliptic� For some of the resonances� there is also another
�xed point which is of the saddle type� i�e� �z� �� pz� p�� � ��
�����z��� �� �� ��� From the
de�nition of z� it is clear that the latter �xed point only exists for �z��� �

p

� The elastic

pendulum also has a special periodic solution in which � � p� � � �the normal mode��
This normal mode is an exact solution of the system derived from ���� We note that there
is no nontrivial solution of the form ��� ��t�� �� p��t���
Now we turn our attention to the neighborhood of the origin� We refer to 	�� for the

complete derivation of the following Taylor expansion of the Hamiltonian �we have dropped
the bar�

H � H� � H� � �H� � �H� � � � � � ���

with

H� �
�
��z �z

� � p�z� �
�
���

�
�� � p��

�
H� �

��p
�z

�
�
�z�

� � zp��
�

H� �
�

�
�
��
�z
z�p�� � �

���
�
�

H� �� �p
�z

�
�
��
z�� � 
��

�z
z�p��

�
���

�



In 	�� the 
 � ��resonance of the elastic pendulum has been studied intensively� At this
speci�c resonance� the system exhibits an interesting phenomenon called auto�parametric
excitation� e�g� if we start at any initial condition arbitrarily close to the normal mode�
then we will see energy interchanging between the oscillating and swinging motion� In
	�� the author shows that the normal mode solution �which is the vertical oscillation� is
unstable and therefore� gives an explanation of the auto�parametric behavior�
Next we consider two limiting cases of the resonances� i�e� when �z��� 	 � and

�z��� 	 �� The �rst limiting case can be interpreted as a case with a very large spring
constant so that the vertical oscillation can be neglected� The spring pendulum then
becomes an ordinary pendulum� thus the system is integrable� The other limiting case is
interpreted as the case where l� � � �or very weak spring� �� Using the transformation r �
l�z���� x � r cos� and y � r sin�� we transform the Hamiltonian ��� to the Hamiltonian
of the harmonic oscillator� Thus this case is also integrable� Furthermore� in this case all
solutions are periodic with the same period which is known as isochronism� This means that
we can remove the dependence of the period of oscillation of the mathematical pendulum
on the amplitude� using this speci�c spring� We note that this isochronism is not derived
from the normal form �as in 	��� but exact�
All other resonances are higher order resonances� In two degrees of freedom �which is

the case we consider�� for �xed small energy the phase space of the system near the origin
looks like the phase space of decoupled harmonic oscillator� A consequence of this fact is
that in the neighborhood of the origin� there is no interaction between the two degrees of
freedom� The normal mode �if it exists�� then becomes elliptic �thus stable��
Another possible feature of this type of resonance is the existence of a resonance mani�

fold containing periodic solutions �see 	� paragraph ����� We remark that the existence of
this resonance manifold does not depend on whether the system is integrable or not� In the
resonance domain �i�e� the neighborhood of the resonant manifold�� interesting dynamics
�in the sense of energy interchanging between the two degrees of freedom� takes place �see
	�
�� Both the size of the domain where the dynamics takes place and the time�scale of
interaction are characterized by  and the order of the resonance� i�e� the estimate of the
size of the domain is

d� � O
�

m�n��

�

�
���

and the time�scale of interactions is O��
m�n
� � for �z � �� � m � n with �m�n� � �� � We

note that for some of the higher order resonances where �z��� � � the resonance manifold
fails to exist� See 	�� for details�

�This case is unrealistic for the model illustrated in Figure �� A more realistic mechanical model with
the same Hamiltonian �	
 can be constructed by only allowing some part of the spring to swing

�Due to a particular symmetry� some of the lower order resonances become higher order resonances
���	�
� In those cases� �m�n
  � need not hold�

�



� Numerical Studies on the Elastic Pendulum

One of the aims of this study is to construct a numerical Poincar�e map �P� for the elastic
pendulum in higher order resonance� As is explained in the previous section� interest�
ing dynamics of the higher order resonances takes place in a rather small part of phase
space� Moreover� the interaction time�scale is also rather long� For these two reasons� we
need a numerical method which preserves qualitative behavior after a long time of integra�
tion� Obviously by decreasing the time step of any standard integrator �e�g� Runge�Kutta
method�� we would get a better result� As a consequence however� the actual computation
time would become prohibitively long� Under these constraints� we would like to propose
by means of an example that symplectic integrators o�er reliable and reasonably cheap
methods to obtain qualitatively good phase portraits�
We have selected four of the most prominent higher order resonances in the elastic

pendulum� For each of the chosen resonances� we derive its corresponding equations of
motion from ���� This is done because the dependence on the small parameter  is more
visible there than in ���� Also from the asymptotic analysis point of view� we know that
��� truncated to a su�cient degree has enough ingredients of the dynamics of ����
The map P is constructed as follows� We choose the initial values �� in such a way

that they all lie in the approximate energy manifold H� � E� � R and in the section
� � f� � �z� �� pz� p��jz � �� pz � �g� We follow the numerically constructed trajectory
corresponding to �� and take the intersection of the trajectory with section �� The in�
tersection point is de�ned as P����� Starting from P���� as an initial value� we go on
integrating and in the same way we �nd P������ and so on�
The best way of measuring the performance of a numerical integrator is by comparing

with an exact solution� Due to the presence of the normal mode solution �as an exact
solution�� we can check the performance of the numerical integrator in this way �we will
do this in section ��
� � Nevertheless� we should remark that none of the nonlinear terms
play a part in this normal mode solution� Recall that the normal mode is found in the
invariant manifold f�z� �� pz� p�j� � p� � �g and in this manifold the equations of motion
of ��� are linear�
Another way of measuring the performance of an integrator is to compare it with

other methods� One of the best known methods for time integration are the Runge�Kutta
methods �see 	��� We will compare our integrator with a higher order ���� order� Runge�
Kutta method �RK���� The RK�� is based on the method of Runge�Kutta�Felbergh �	����
The advantage of this method is that it provides step�size control� As is indicated by the
name of the method� to choose the optimal step size it compares the discretizations using ��
th order and ��th order Runge�Kutta methods� A nice discussion on lower order methods of
this type� can be found in 	�� pp� �������� The coe�cients in this method are not uniquely
determined� For RK�� that we used in this paper� the coe�cients were calculated by C�
Simo from the University of Barcelona� We will also compare the symplectic integrator
�SI� to the standard ��th order Runge�Kutta method�
We will �rst describe the splitting of the Hamiltonian which is at the core of the

symplectic integration method in this paper� By combining the �ow of each part of the

�



Hamiltonian� we construct a ��th order symplectic integrator� The symplecticity is obvious
since it is the composition of exact Hamiltonian �ows� Next we will show the numerical
comparison between the three integrators� RK��� SI and RK�� We compare them to
an exact solution� We will also show the performance of the numerical integrators with
respect to energy preservation� We note that SI are not designed to preserve energy �see
	���� Because RK�� is a higher order method �thus more accurate�� we will also compare
the orbit of RK� and SI� We will end this section with results on the size of the resonance
domain calculated by the SI method�

��� The Splitting of the Hamiltonian

Consider again the expanded Hamiltonian of the elastic pendulum ���� We split this
Hamiltonian into integrable parts� H � H� �H� �H�� where

H� �
��



p
�z
z�� � �

�


�
�� � �

�


�
p
�z
z�� � � � �

H� �� 
��p
�z
zp�� � �

�




��

�z
z�p�� � �


��

�z
p
�z

z�p�� � � � �

H� ��
��z �z� � p�z� �

�
���

�
�� � p��

�
�

����

Note that the equations of motion derived from each part of the Hamiltonian can be
integrated exactly� thus we know the exact �ow ���� � ���� � and ���� corresponding to
H��H�� and H� respectively� This splitting has the following advantages�

 It preserves the Hamiltonian structure of the system�
 It preserves the symmetry ��� and reversing symmetries ��� of H�
 H� and H� are of O�� compared with H �or H���

Note that� for each resonance we will truncate ���� up to and including the degree where
the resonant terms of the lowest order occur�
We de�ne

�� � ������ � ������ � ���� � ������ � ������� ����

From section 
 we know that this is a second order method� Next we de�ne � � ���
� �
p

�

and �� � ��� �������	� ���� to get a fourth order method� This is known as the generalized
Yoshida method �see 	���� By� Symplectic Integrator �SI� we will mean this fourth order
method� This composition preserves the symplectic structure of the system� as well as the
symmetry ��� and the reversing symmetries ���� This is in contrast with the Runge�Kutta
methods which only preserves the symmetry ���� but not the symplectic structure� nor the
reversing symmetries ���� As a consequence the Runge�Kutta methods do not preserve the
KAM tori caused by symplecticity or reversibility�

�



��� Numerical Comparison between RK�� RK�� and SI

We start by comparing the three numerical methods� i�e� RK�� RK��� and SI� We choose
the � � ��resonance� which is the most prominent higher order resonance� as a test problem�
We �x the value of the energy �H�� to be � and take  � ����� Starting at the initial
condition z��� � �� ���� � �� pz �

p
��
� and p���� � �� we know that the exact solution

we are approximating is given by �
p
��
 sin��t�� ��

p
��
 cos��t�� ��� We integrate the

equations of motion up to t � ��� seconds and keep the result of the last �� seconds to
have time series z�tn� and pz�tn� produced by each integrator� Then we de�ne a sequence
sn � �������n����� n � �� �� � � � � 
��� Using an interpolation method� for each of the time
series we calculate the numerical z�sn�� In �gure 
 we plot the error function z�sn�� z�sn�
for each integrator�
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Figure 
� Plots of the error function z�sn� � z�sn� against time� The upper �gure is
the result of RK�� the middle �gure is RK�� and the lower �gure is of SI� The time of
integration is ��� with a time step for RK� and SI of ���
��

The plots in Figure in 
 clearly indicate the superiority of RK�� compared with the
other methods �due to the higher order method�� The error generated by RK�� is of order
���
 for an integration time of ��� seconds� The minimum time step taken by RK�� is
���

� and the maximum is ���
��� The error generated by SI on the other hand� is of
order ����� The CPU time of RK�� during this integration is ������ seconds� SI completes
the computation after �����
 seconds while RK� only needs ������ seconds�
We will now measure how well these integrators preserve energy� We start integrating

from an initial condition z��� � �� ���� � ����� p���� � � and pz��� is determined from
H� � � �in other word we integrate on the energy manifold H � � � O���� The small
parameter is  � ���� and we integrate for t � ��� seconds�
For RK��� the integration takes �����
 second of CPU time� For RK� and SI we used

the same time step� that is ����� RK� takes ������ seconds while SI takes ������ seconds

�
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Figure �� Plots of the energy against time� The solid line represents the results from SI�
The line with ��� represents the results from RK� and the line with ��� represents the
results from RK��� On the left hand plot� we show the results of all three methods with
the time step ����� The time step in the right hand plots is ����� The results from RK�
are plotted seperately since the energy has decreased signi�cantly compared to the other
two methods�

of CPU time� It is clear that SI� for this size of time step� is ine�cient with regard to CPU
time� This is due to the fact that to construct a higher order method we have to compose
the �ow several times� We plot the results of the last �� seconds of the integrations in
Figure �� We note that in these �� seconds� the largest time step used by RK�� is ���
�
�
� � � while the smallest is ���
��� � � � � It is clear from this� that even though the CPU time
of RK� is very good� the result in the sense of conservation of energy is rather poor relative
to the other methods�
We increase the time step to ���� and integrate the equations of motion starting at the

same initial condition and for the same time� The CPU time of SI is now ������ while for
the RK� it is ������ Again� in Figure � �the right hand plots� we plot the energy against
time� A signi�cant di�erence between RK� and SI then appears in the energy plots� The
results of symplectic integration are still good compared with the higher order method
RK��� On the other hand� the results from RK� are far below the other two�

��� Computation of the Size of the Resonance Domain

Finally� we calculate the resonance domain for some of the most prominent higher order
resonances for the elastic pendulum� In Figure � we give an example of the resonance
domain for the � � � resonance� We note that RK� fails to produce the section� On the
other hand� the results from SI are still accurate� We compare the results from SI and
RK�� in Figure �� After �� ��� seconds� one loop in the plot is completed� For that time
of integration� RK�� takes ����
 seconds of CPU time� while SI takes only ����� seconds�

��
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Figure �� Resonance domain for the � � ��resonance� The plots on the left are the results
from SI while the right hand plots are the results from RK��� The vertical axis is the p�
axis and the horizontal axis is �� The time step is ���� and  � ����� In the top �gures�
we blow up a part of the pictures underneath�

This is very useful since to calculate for smaller values of  and higher resonance cases� the
integration time is a lot longer which makes it impractical to use RK���
In Table � we list the four most prominent higher order resonances for the elastic

pendulum� This table is adopted from 	�� where the authors list six of them�
The numerical size of the domain in table � is computed as follows� We �rst draw

several orbits of the Poincar�e maps P� Using a twist map argument� we can locate the
resonance domain� By adjusting the initial condition manually� we then approximate the
heteroclinic cycle of P� See �gure � for illustration� Using interpolation we construct the
function ro��� which represent the distance of a point in the outer cycle to the origin and �
is the angle with respect to the positive horizontal axis� We do the same for the inner cycle
and then calculate max� jro��� � ri���j� The higher the resonance is� the more di�cult to
compute the size of the domain in this way�
For resonances with very high order� manually approximating the heteroclinic cycles

would become impractical� and one could do the following� First we have to calculate
the location of the �xed points of the iterated Poincar�e maps numerically� Then we can
construct approximations of the stable and unstable manifolds of one of the saddle points�
By shooting to the next saddle point� we can make corrections to the approximate stable
and unstable manifold of the �xed point�

��



Resonance Resonant Analytic Numerical Error
part log��d�� log��d��
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Table �� Comparison between the analytic estimate and the numerical computation of the
size of the resonance domain of four of the most prominent higher order resonances of the
elastic pendulum� The second column of this table indicates the part of the expanded
Hamiltonian in which the lowest order resonant terms are found�
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Figure �� Plots of log�d�� against log�� for various resonances� The � � ��resonance is
plotted using ����� the � � ��resonance is using ����� the � � ��resonance is using ���� and
the � � � resonance is using �����

� Discussion

In this section we summarize the previous sections� First the performance of the integrators
is summarized in table 
�
As indicated in table 
� for the � � � and the � � � resonances� the higher order

Runge�Kutta method fails to produce the section� This is caused by the dissipation term�
arti�cially introduced by this numerical method� which after a long time of integration
starts to be more signi�cant� On the other hand� we conclude that the results of our
symplectic integrator are reliable� This conclusion is also supported by the numerical
calculations of the size of the resonance domain �listed in Table 
��
In order to force the higher order Runge�Kutta method to be able to produce the section�

one could also do the following� Keeping in mind that RK�� has automatic step size control

�




Integrators
RK� RK�� SI

CPU time ��t � ���	 t � �� sec�	 ������ sec� ������ sec� �����
 sec�
The � � � Preservation of H �t � �� sec�	 Poor Good Good
resonance Orbital Quality Poor Very good Good

Section Quality  Good Good
The � � � Orbital Quality Poor Good Good
resonance Section Quality  Good Good
The � � � Orbital Quality Poor Good Good
resonance Section Quality   Good
The � � � Orbital Quality Poor Poor Good
resonance Section Quality   Good

Table 
� Summary of the performance of the integrators� A bar  indicates that it is not
feasible to obtain a surface of section for this resonance using this integrator�

based on the smoothness of the vector �eld� one could manually set the maximumtime step
for RK�� to be smaller than ���
���� This would make the integration times extremely
long however�
We should remark that in this paper we have made a number of simpli�cations� One

is that we have not used the original Hamiltonian� The truncated Taylor expansion of ���
is polynomial� Somehow this may have a smoothing e�ect on the Hamiltonian system�
It would be interesting to see the e�ect of this simpli�cation on the dynamics of the full
system� Another simpli�cation is that� instead of choosing our initial conditions in the
energy manifold H � C� we are choosing them in H� � C� By using the full Hamiltonian
instead of the truncated Taylor expansion of the Hamiltonian� it would become easy to
choose the initial conditions in the original energy manifold� Nevertheless� since in this
paper we always start in the section �� we know that we are actually approximating the
original energy manifold up to order ��
We also have not used the presence of the small parameter  in the system� As noted

in 	�� it may be possible to improve our symplectic integrator using this small parameter�
Still related to this small parameter� one also might ask whether it would be possible to
go to even smaller values of � In this paper we took e�� 
  
 e���� As noted in the
previous section� the method that we apply in this paper can not be used for computing
the size of the resonance domain for very high order resonances� This is due to the fact
that the resonance domain then becomes exceedingly small� This is more or less the same
di�culty we might encounter if we decrease the value of �
Another interesting posibility is to numerically follow the resonance manifold as the

energy increases� As noted in the introduction� this is numerically di�cult problem� Since
this symplectic integration method o�ers a cheap and accurate way of producing the res�
onance domain� it might be posible to numerically study the bifurcation of the resonance

��



manifold as the energy increases� Again� we note that to do so we would have to use the
full Hamiltonian�
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