2 research outputs found

    Avances en el estudio fractográfico de fibras cerámicas de circonaerbia mediante microscopía óptica confocal

    Get PDF
    La microscopía óptica confocal (LSCM, Laser Scanning Confocal Microscopy) es una técnica microscópica basada en una construcción óptica que permite eliminar la luz procedente de zonas no enfocadas de la muestra. Mientras que es de amplio uso en Ciencias de la Vida, la aplicación de LSCM a la Ciencia de Materiales no ha sido apenas explorada, siendo prácticamente inexistentes los estudios fractográficos que se apoyen en LSCM. A pesar de ello, sus características (obtención de información tridimensional, resolución por debajo de la micra y sencilla preparación de muestras) la convierten en una herramienta idónea para una multitud de problemas fractográficos, debido a la obtención rápida de valiosa información y a su buena coordinación con la microscopía electrónica de barrido (SEM). En este trabajo, los autores estudian en detalle un sistema de interés (fibras cerámicas de circona dopada con un 5% molar de erbia, sometidas a ensayos de tracción a alta temperatura) mediante LSCM. Además de poner de relieve la utilidad de la técnica y de revelar la textura característica de la superficie de fractura de dichas fibras, se encuentra que dicha textura refleja la estructura nanométrica de precipitados propia del material.Laser scanning confocal microscopy (LSCM) is a microscopic technique based on an optical construction which allows the microscope to discard the light coming from unfocused zones of the sample. Whereas LSCM is extensively used in Natural Sciences (Biology, Medicine...), its use in Materials Science is almost unexplored and, in particular, there are essentially no fractographical studies using LSCM. However, its characteristics (gathering of 3D information, better than micron resolution and simple sample preparation) make LSCM an ideal tool in a wide selection of fractographical problems, owing to the fast adquisition of valuable information and to the excellent sinergy with scanning electron microscopy (SEM). In the present work, the authors study an interesting system (ZrO2 -5% mol Er2 O3 fibers, submitted to tensile strength in hightemperature conditions) in detail with LSCM. In addition to showcasing the usefulness of LSCM in fractographical studies and revealing the characteristic texture of the fracture surface in such fibers, said texture is found to closely resemble the nanometric precipitate structure which is unique to this material

    Electrical properties of biomorphic SiC ceramics and SiC/Si composites fabricated from medium density fiberboard

    Get PDF
    A study has been made of the dependences of the electrical resistivity and the Hall coefficient on the temperature in the range 1.8–1300 K and on magnetic fields of up to 28 kOe for the biomorphic SiC/Si (MDF-SiC/Si) composite and biomorphic porous SiC (MDF-SiC) based upon artificial cellulosic precursor (MDF – medium density fiberboards). It has been shown that electric transport in MDF-SiC is effected by carriers of n-type with a high concentration of ∼1020 cm−3 and a low mobility of ∼0.4 cm2 V−1 s−1. The specific features in the conductivity of MDF-SiC are explained by quantum effects arising in disordered systems and requiring quantum corrections to conductivity. The TEM studies confirmed the presence of disordering structural features (nanocrystalline regions) in MDF-SiC. The conductivity of MDF-SiC/Si composite originates primarily from Si component in the temperature range 1.8–500 K and since ∼500 to 600 K the contribution of MDF-SiC matrix becomes dominant
    corecore