107 research outputs found

    Worldwide trends in underweight and obesity from 1990 to 2022: a pooled analysis of 3663 population-representative studies with 222 million children, adolescents, and adults

    Get PDF
    Background Underweight and obesity are associated with adverse health outcomes throughout the life course. We estimated the individual and combined prevalence of underweight or thinness and obesity, and their changes, from 1990 to 2022 for adults and school-aged children and adolescents in 200 countries and territories. Methods We used data from 3663 population-based studies with 222 million participants that measured height and weight in representative samples of the general population. We used a Bayesian hierarchical model to estimate trends in the prevalence of different BMI categories, separately for adults (age ≥20 years) and school-aged children and adolescents (age 5–19 years), from 1990 to 2022 for 200 countries and territories. For adults, we report the individual and combined prevalence of underweight (BMI 2 SD above the median). Findings From 1990 to 2022, the combined prevalence of underweight and obesity in adults decreased in 11 countries (6%) for women and 17 (9%) for men with a posterior probability of at least 0·80 that the observed changes were true decreases. The combined prevalence increased in 162 countries (81%) for women and 140 countries (70%) for men with a posterior probability of at least 0·80. In 2022, the combined prevalence of underweight and obesity was highest in island nations in the Caribbean and Polynesia and Micronesia, and countries in the Middle East and north Africa. Obesity prevalence was higher than underweight with posterior probability of at least 0·80 in 177 countries (89%) for women and 145 (73%) for men in 2022, whereas the converse was true in 16 countries (8%) for women, and 39 (20%) for men. From 1990 to 2022, the combined prevalence of thinness and obesity decreased among girls in five countries (3%) and among boys in 15 countries (8%) with a posterior probability of at least 0·80, and increased among girls in 140 countries (70%) and boys in 137 countries (69%) with a posterior probability of at least 0·80. The countries with highest combined prevalence of thinness and obesity in school-aged children and adolescents in 2022 were in Polynesia and Micronesia and the Caribbean for both sexes, and Chile and Qatar for boys. Combined prevalence was also high in some countries in south Asia, such as India and Pakistan, where thinness remained prevalent despite having declined. In 2022, obesity in school-aged children and adolescents was more prevalent than thinness with a posterior probability of at least 0·80 among girls in 133 countries (67%) and boys in 125 countries (63%), whereas the converse was true in 35 countries (18%) and 42 countries (21%), respectively. In almost all countries for both adults and school-aged children and adolescents, the increases in double burden were driven by increases in obesity, and decreases in double burden by declining https://researchonline.ljmu.ac.uk/images/research_banner_face_lab_290.jpgunderweight or thinness. Interpretation The combined burden of underweight and obesity has increased in most countries, driven by an increase in obesity, while underweight and thinness remain prevalent in south Asia and parts of Africa. A healthy nutrition transition that enhances access to nutritious foods is needed to address the remaining burden of underweight while curbing and reversing the increase in obesity

    Diminishing benefits of urban living for children and adolescents’ growth and development

    Get PDF
    AbstractOptimal growth and development in childhood and adolescence is crucial for lifelong health and well-being1–6. Here we used data from 2,325 population-based studies, with measurements of height and weight from 71 million participants, to report the height and body-mass index (BMI) of children and adolescents aged 5–19 years on the basis of rural and urban place of residence in 200 countries and territories from 1990 to 2020. In 1990, children and adolescents residing in cities were taller than their rural counterparts in all but a few high-income countries. By 2020, the urban height advantage became smaller in most countries, and in many high-income western countries it reversed into a small urban-based disadvantage. The exception was for boys in most countries in sub-Saharan Africa and in some countries in Oceania, south Asia and the region of central Asia, Middle East and north Africa. In these countries, successive cohorts of boys from rural places either did not gain height or possibly became shorter, and hence fell further behind their urban peers. The difference between the age-standardized mean BMI of children in urban and rural areas was &lt;1.1 kg m–2 in the vast majority of countries. Within this small range, BMI increased slightly more in cities than in rural areas, except in south Asia, sub-Saharan Africa and some countries in central and eastern Europe. Our results show that in much of the world, the growth and developmental advantages of living in cities have diminished in the twenty-first century, whereas in much of sub-Saharan Africa they have amplified.</jats:p

    Enhancing violations of Leggett-Garg inequalities in nonequilibrium correlated many-body systems by interactions and decoherence

    No full text
    We identify different schemes to enhance the violation of Leggett-Garg inequalities in open many-body systems. Considering a nonequilibrium archetypical setup of quantum transport, we show that particle interactions control the direction and amplitude of maximal violation and that in the strongly-interacting and strongly-driven regime bulk dephasing enhances the violation. Through an analytical study of a minimal model, we unravel the basic ingredients to explain this decoherence-enhanced quantumness, illustrating that such an effect emerges in a wide variety of systems

    Universal two-time correlations, out-of-time-ordered correlators and Leggett-Garg inequality violation by edge Majorana fermion qubits

    No full text
    In the present work we propose that two-time correlations of Majorana edge localized fermions constitute a novel and versatile toolbox for assessing the topological phases of 1D open lattices. Using analytical and numerical calculations on the Kitaev model, we uncover universal relationships between the decay of the short-time correlations and a particular family of out-of-time-ordered correlators, which provide direct experimental alternatives to the quantitative analysis of the system regime, either normal or topological. Furthermore we show that the saturation of two-time correlations possesses features of an order parameter. Finally, we find that violations of Leggett-Garg inequalities can indicate the topological-normal phase transition by looking at different qubits formed by pairing local and non-local edge Majorana fermions

    Dynamics of Entanglement and the Schmidt Gap in a Driven Light-Matter System

    No full text
    The ability to modify light-matter coupling in time (e.g. using external pulses) opens up the exciting possibility of generating and probing new aspects of quantum correlations in many-body light-matter systems. Here we study the impact of such a pulsed coupling on the light-matter entanglement in the Dicke model as well as the respective subsystem quantum dynamics. Our dynamical many-body analysis exploits the natural partition between the radiation and matter degrees of freedom, allowing us to explore time-dependent intra-subsystem quantum correlations by means of squeezing parameters, and the inter-subsystem Schmidt gap for different pulse duration (i.e. ramping velocity) regimes -- from the near adiabatic to the sudden quench limits. Our results reveal that both types of quantities indicate the emergence of the superradiant phase when crossing the quantum critical point. In addition, at the end of the pulse light and matter remain entangled even though they become uncoupled, which could be exploited to generate entangled states in non-interacting systems

    Rényi Entropy Singularities as Signatures of Topological Criticality in Coupled Photon-Fermion Systems

    No full text
    We show that the topological phase transition for a Kitaev chain embedded in a cavity can be identified by measuring experimentally accessible photon observables such as the Fano factor and the cavity quadrature amplitudes. Moreover, based on density matrix renormalization group numerical calculations, endorsed by an analytical Gaussian approximation for the cavity state, we propose a direct link between those observables and quantum entropy singularities. We study two bipartite entanglement measures, the von Neumann and R\'enyi entanglement entropies, between light and matter subsystems. Even though both display singularities at the topological phase transition points, remarkably only the R\'enyi entropy can be analytically connected to the measurable Fano factor. Consequently, we show a method to recover the bipartite entanglement of the system from a cavity observable. Thus, we put forward a path to experimentally access the control and detection of a topological quantum phase transition via the R\'enyi entropy, which can be measured by standard low noise linear amplification techniques in superconducting circuits. In this way, the main quantum information features of Majorana polaritons in photon-fermion systems can be addressed in feasible experimental setups

    Seasonal benthic patterns in a glacial Patagonian fjord: the role of suspended sediment and terrestrial organic matter

    No full text
    Complex marine-terrestrial interactions characterize Chilean fjords, where benthic communities influence the distribution of organic matter (OM). We examined spatial and seasonal changes in the hydrography, sediment conditions and soft-bottom macrobenthic, meiobenthic, and total microbial biomass in a glacial Patagonian fjord (Martinez Channel, Chile). The transport of a high load of glacial mineral and particulate OM to the fjord in the austral summer coincided with low total live benthic biomass. Multivariate analysis evidenced temporal-related macrofaunal groups influenced by the different environments produced by the advection of sediment transport and terrestrial OM from the Baker River, Chile. The relationships between density/biomass and respiration versus body size varied considerably with distance from major riverine inputs, but the slopes of density size spectra and normalized biomass size spectra were less negative in summer than in winter. Occasional large-scale advective processes in the water column affected sediment conditions and removed surface macrofauna, influencing the slope and intercept of the regression models. In the outer fjord, lateral advection and subsequent sedimentation of terrestrial OM contributed a significant fraction to total OM sediments (<14.76%). Stable carbon isotopes measured in benthic organisms suggest that benthic communities in the inner fjord may assimilate a significant fraction of terrestrial OM via heterotrophic bacteria in contrast to the minor input of terrestrial OM in the outer fjord
    corecore