18 research outputs found

    Selected 'Starter kit' energy system modelling data for selected countries in Africa, East Asia, and South America (#CCG, 2021)

    Get PDF
    Energy system modeling can be used to develop internally-consistent quantified scenarios. These provide key insights needed to mobilise finance, understand market development, infrastructure deployment and the associated role of institutions, and generally support improved policymaking. However, access to data is often a barrier to starting energy system modeling, especially in developing countries, thereby causing delays to decision making. Therefore, this article provides data that can be used to create a simple zero-order energy system model for a range of developing countries in Africa, East Asia, and South America, which can act as a starting point for further model development and scenario analysis. The data are collected entirely from publicly available and accessible sources, including the websites and databases of international organisations, journal articles, and existing modeling studies. This means that the datasets can be easily updated based on the latest available information or more detailed and accurate local data. As an example, these data were also used to calibrate a simple energy system model for Kenya using the Open Source Energy Modeling System (OSeMOSYS) and three stylized scenarios (Fossil Future, Least Cost and Net Zero by 2050) for 2020–2050. The assumptions used and the results of these scenarios are presented in the appendix as an illustrative example of what can be done with these data. This simple model can be adapted and further developed by in-country analysts and academics, providing a platform for future work

    The Climate, Land, Energy, and Water systems (CLEWs) framework: a retrospective of activities and advances to 2019

    Get PDF
    Population growth, urbanization and economic development drive the use of resources. Securing access to essential services such as energy, water, and food, while achieving sustainable development, require that policy and planning processes follow an integrated approach. The 'Climate-, Land-, Energy- and Water-systems' (CLEWs) framework assists the exploration of interactions between (and within) CLEW systems via quantitative means. The approach was first introduced by the International Atomic Energy Agency to conduct an integrated systems analysis of a biofuel chain. The framework assists the exploration of interactions between (and within) CLEW systems via quantitative means. Its multi-institutional application to the case of Mauritius in 2012 initiated the deployment of the framework. A vast number of completed and ongoing applications of CLEWs span different spatial and temporal scales, discussing two or more resource interactions under different political contexts. Also, the studies vary in purpose. This shapes the methods that support CLEWs-type analyses. In this paper, we detail the main steps of the CLEWs framework in perspective to its application over the years. We summarise and compare key applications, both published in the scientific literature, as working papers and reports by international organizations. We discuss differences in terms of geographic scope, purpose, interactions represented, analytical approach and stakeholder involvement. In addition, we review other assessments, which contributed to the advancement of the CLEWs framework. The paper delivers recommendations for the future development of the framework, as well as keys to success in this type of evaluations

    Supporting energy system modelling in developing countries: Techno-economic energy dataset for open modelling of decarbonization pathways in Colombia

    No full text
    Decarbonization pathways have emerged as a pivotal element of global climate change mitigation strategies. Energy system modelling is widely recognized as a tool to support the design of informed energy decarbonization policies. However, the development of energy models heavily relies on high-quality input data, which may pose significant challenges in developing countries where data accessibility is limited, incomplete, outdated, or inadequate. Moreover, while models may exist in countries, these are not publicly available; therefore, details cannot be retrieved, repeated, reconstructed, interoperable or auditable (U4RIA*⁎ U4RIA: Ubuntu, Retrievability, Reusability, Repeatability, Reconstructability, Interoperability, and Auditability). This paper presents an open techno-economic energy dataset for Colombia that is U4RIA-compliant as it can be used transparently to model decarbonization pathways and support energy planning in the country. Despite being country-specific, most of the data is technology-based and thus applicable to other countries. Diverse sources, assumptions, and modelling guidelines are described to facilitate the creation of new datasets. The dataset enhances the availability of energy data for policymakers, stakeholders, and researchers, not only in Colombia but also in other developing countries

    Informing sustainable energy policy in developing countries: An assessment of decarbonization pathways in Colombia using open energy system optimization modelling

    No full text
    Colombia is committed to reducing its greenhouse gas (GHG) emissions by 51 % by 2030 as part of the Paris Agreement, with a further goal of achieving carbon neutrality by 2050. The energy sector accounts for one-third of net GHG emissions in the country; thus, its decarbonization is crucial to accomplish these targets. In this study, we assess plausible decarbonization pathways using an open-source national energy system optimization model (OSeMOSYS). We build three scenarios over 2021–2050 and contrast them in terms of emissions, energy consumption, technology deployment, costs, and benefits. The results show that a decarbonized energy system can reduce carbon intensity by 93 %, energy intensity by 44 %, fossil fuel imports by 90 %, and provide socioeconomic benefits equivalent to 21 % of the Colombia's 2021 GDP. We use these results to recommend milestones and policy actions that can help inform policymakers about cost-effective strategies to achieve a sustainable, efficient, and more resilient energy system by mid-century. Our transparent and systematic methodology provides a tool for long-term energy planning in Colombia which can also be replicated in other developing countries for assessing decarbonization pathways

    Assessing the role of low-emission hydrogen: A techno-economic database for hydrogen pathways modelling

    No full text
    Hydrogen is globally acknowledged as a versatile energy carrier crucial for decarbonization in multiple sectors. Many countries have initiated the development of national hydrogen roadmaps and strategies, recognizing hydrogen as a strategic resource for achieving sustainable energy transitions. Formulating these guidelines for future action demands a solid technical foundation to facilitate well-informed decision-making. Energy system modelling has emerged as a significant scientific tool to assist governments and ministries in designing hydrogen pathways assessments based on scientific outcomes. The first step in the modelling process involves gathering, curating, and managing techno-economic data, a process that is often time-consuming and hindered by the unavailability and inaccessibility of data sources. This paper introduces an open techno-economic dataset encompassing key technologies within the hydrogen supply chain, spanning from production to end-use applications. Energy modelers, researchers, policymakers, and stakeholders can leverage this dataset for energy planning models, with a specific focus on hydrogen pathways. The presented data is designed to promote modelling studies that are retrievable, reusable, repeatable, reconstructable, interoperable, and auditable (U4RIA1). This enhanced transparency aims to foster greater public trust, scientific reproducibility, and increased collaboration amongst academia, industry, and government in producing technical reports that underpin national hydrogen roadmaps and strategies
    corecore