7 research outputs found

    Quercetin derivatives as novel antihypertensive agents: Synthesis and physiological characterization

    Get PDF
    The antihypertensive flavonol quercetin (Q1) is endowedwith a cardioprotective effect againstmyocardial ischemic damage. Q1 inhibits angiotensin converting enzymeactivity, improves vascular relaxation, and decreases oxidative stress and gene expression. However, the clinical application of this flavonol is limited by its poor bioavailability and low stability in aqueous medium. In the aimto overcome these drawbacks and preserve the cardioprotective effects of quercetin, the present study reports on the preparation of five different Q1 analogs, in which all OH groups were replaced by hydrophobic functional moieties. Q1 derivatives have been synthesized by optimizing previously reported procedures and analyzed by spectroscopic analysis. The cardiovascular properties of the obtained compounds were also investigated in order to evaluate whether chemical modification affects their biological efficacy. The interaction with β-adrenergic receptors was evaluated by molecular docking and the cardiovascular efficacy was investigated on the ex vivo Langendorff perfused rat heart. Furthermore, the bioavailability and the antihypertensive properties of the most active derivative were evaluated by in vitro studies and in vivo administration (1month) on spontaneously hypertensive rats (SHRs), respectively. Among all studied Q1 derivatives, only the ethyl derivative reduced left ventricular pressure (at 10−8M÷10−6Mdoses) and improved relaxation and coronary dilation. NOSs inhibition by L-NAME abolished inotropism, lusitropism and coronary effects. Chronic administration of high doses of this compound on SHR reduced systolic and diastolic pressure. Differently, the acetyl derivative induced negative inotropism and lusitropism (at 10−10M and 10−8 ÷ 10−6 M doses), without affecting coronary pressure. Accordingly, docking studies suggested that these compounds bind both β1/β2-adrenergic receptors. Taking into consideration all the obtained results, the replacement of OHwith ethyl groups seems to improve Q1 bioavailability and stability; therefore, the ethyl derivative could represent a good candidate for clinical use in hypertension

    A novel orally active water-soluble inhibitor of human glutathione transferase exerts a potent and selective antitumor activity against human melanoma xenografts

    No full text
    We designed and synthesized two novel nitrobenzoxadiazole (NBD) analogues of the anticancer agent 6-((7-nitrobenzo[c][1,2,5]oxadiazol-4-yl)thio)hexan-1-ol (NBDHEX). The new compounds, namely MC3165 and MC3181, bear one and two oxygen atoms within the hydroxy-containing alkyl chain at the C4 position of the NBD scaffold, respectively. This insertion did not alter the chemical reactivity with reduced glutathione, while it conferred a remarkable increase in water solubility. MC3181 was more selective than NBDHEX towards the target protein, glutathione transferase P1-1, and highly effective in vitro against a panel of human melanoma cell lines, with IC50 in the submicromolar-low micromolar range. Interestingly, the cellular response to MC3181 was cell-type-specific; the compound triggered a JNK-dependent apoptosis in the BRAF-V600E-mutated A375 cells, while it induced morphological changes together with an increase in melanogenesis in BRAF wild-type SK23-MEL cells. MC3181 exhibited a remarkable therapeutic activity against BRAF-V600E-mutant xenografts, both after intravenous and oral administration. Outstandingly, no treatment-related signs of toxicity were observed both in healthy and tumor-bearing mice after single and repeated administrations. Taken together, these results indicate that MC3181 may represent a potential novel therapeutic opportunity for BRAF-mutated human melanoma, while being safe and water-soluble and thus overcoming all the critical aspects of NBDHEX in vivo

    A novel orally active water-soluble inhibitor of human glutathione transferase exerts a potent and selective antitumor activity against human melanoma xenografts

    Get PDF
    none12noWe designed and synthesized two novel nitrobenzoxadiazole (NBD) analogues of the anticancer agent 6-((7-nitrobenzo[c][1,2,5]oxadiazol-4-yl)thio)hexan-1-ol (NBDHEX). The new compounds, namely MC3165 and MC3181, bear one and two oxygen atoms within the hydroxy-containing alkyl chain at the C4 position of the NBD scaffold, respectively. This insertion did not alter the chemical reactivity with reduced glutathione, while it conferred a remarkable increase in water solubility. MC3181 was more selective than NBDHEX towards the target protein, glutathione transferase P1-1, and highly effective in vitro against a panel of human melanoma cell lines, with IC50 in the submicromolar-low micromolar range. Interestingly, the cellular response to MC3181 was cell-type-specific; the compound triggered a JNK-dependent apoptosis in the BRAF-V600E-mutated A375 cells, while it induced morphological changes together with an increase in melanogenesis in BRAF wild-type SK23-MEL cells. MC3181 exhibited a remarkable therapeutic activity against BRAF-V600E-mutant xenografts, both after intravenous and oral administration. Outstandingly, no treatment-related signs of toxicity were observed both in healthy and tumor-bearing mice after single and repeated administrations. Taken together, these results indicate that MC3181 may represent a potential novel therapeutic opportunity for BRAF-mutated human melanoma, while being safe and water-soluble and thus overcoming all the critical aspects of NBDHEX in vivo.noneDe Luca, Anastasia; Rotili, Dante; Carpanese, Debora; Lenoci, Alessia; Calderan, Laura; Scimeca, Manuel; Mai, Antonello; Bonanno, Elena; Rosato, Antonio; Geroni, Cristina; Quintieri, Luigi; Caccuri, Anna MariaDe Luca, Anastasia; Rotili, Dante; Carpanese, Debora; Lenoci, Alessia; Calderan, Laura; Scimeca, Manuel; Mai, Antonello; Bonanno, Elena; Rosato, Antonio; Geroni, Cristina; Quintieri, Luigi; Caccuri, Anna Mari

    A novel orally active water-soluble inhibitor of human glutathione transferase exerts a potent and selective antitumor activity against human melanoma xenografts

    No full text
    We designed and synthesized two novel nitrobenzoxadiazole (NBD) analogues of the anticancer agent 6-((7-nitrobenzo[c][1,2,5]oxadiazol-4-yl)thio)hexan-1-ol (NBDHEX). The new compounds, namely MC3165 and MC3181, bear one and two oxygen atoms within the hydroxy-containing alkyl chain at the C4 position of the NBD scaffold, respectively. This insertion did not alter the chemical reactivity with reduced glutathione, while it conferred a remarkable increase in water solubility. MC3181 was more selective than NBDHEX towards the target protein, glutathione transferase P1-1, and highly effective in vitro against a panel of human melanoma cell lines, with IC50 in the submicromolar-low micromolar range. Interestingly, the cellular response to MC3181 was cell-type-specific; the compound triggered a JNK-dependent apoptosis in the BRAF-V600E-mutated A375 cells, while it induced morphological changes together with an increase in melanogenesis in BRAF wild-type SK23-MEL cells. MC3181 exhibited a remarkable therapeutic activity against BRAF-V600E-mutant xenografts, both after intravenous and oral administration. Outstandingly, no treatment-related signs of toxicity were observed both in healthy and tumor-bearing mice after single and repeated administrations. Taken together, these results indicate that MC3181 may represent a potential novel therapeutic opportunity for BRAF-mutated human melanoma, while being safe and water-soluble and thus overcoming all the critical aspects of NBDHEX in vivo

    Quercetin derivatives as novel antihypertensive agents: Synthesis and physiological characterization

    Get PDF
    The antihypertensive flavonol quercetin (Q1) is endowed with a cardioprotective effect against myocardial ischemic damage. Q1 inhibits angiotensin converting enzyme activity, improves vascular relaxation, and decreases oxidative stress and gene expression. However, the clinical application of this flavonol is limited by its poor bioavailability and low stability in aqueous medium. In the aim to overcome these drawbacks and preserve the cardioprotective effects of quercetin, the present study reports on the preparation of five different Q1 analogs, in which all OH groups were replaced by hydrophobic functional moieties. Q1 derivatives have been synthesized by optimizing previously reported procedures and analyzed by spectroscopic analysis. The cardiovascular properties of the obtained compounds were also investigated in order to evaluate whether chemical modification affects their biological efficacy. The interaction with β-adrenergic receptors was evaluated by molecular docking and the cardiovascular efficacy was investigated on the ex vivo Langendorff perfused rat heart. Furthermore, the bioavailability and the antihypertensive properties of the most active derivative were evaluated by in vitro studies and in vivo administration (1 month) on spontaneously hypertensive rats (SHRs), respectively. Among all studied Q1 derivatives, only the ethyl derivative reduced left ventricular pressure (at 10− 8 M ÷ 10− 6 M doses) and improved relaxation and coronary dilation. NOSs inhibition by L-NAME abolished inotropism, lusitropism and coronary effects. Chronic administration of high doses of this compound on SHR reduced systolic and diastolic pressure. Differently, the acetyl derivative induced negative inotropism and lusitropism (at 10− 10 M and 10− 8 ÷ 10− 6 M doses), without affecting coronary pressure. Accordingly, docking studies suggested that these compounds bind both β1/β2-adrenergic receptors. Taking into consideration all the obtained results, the replacement of OH with ethyl groups seems to improve Q1 bioavailability and stability; therefore, the ethyl derivative could represent a good candidate for clinical use in hypertension
    corecore