165 research outputs found

    Gemini Planet Imager observational calibrations V: astrometry and distortion

    Get PDF
    We present the results of both laboratory and on sky astrometric characterization of the Gemini Planet Imager (GPI). This characterization includes measurement of the pixel scale* of the integral field spectrograph (IFS), the position of the detector with respect to north, and optical distortion. Two of these three quantities (pixel scale and distortion) were measured in the laboratory using two transparent grids of spots, one with a square pattern and the other with a random pattern. The pixel scale in the laboratory was also estimate using small movements of the artificial star unit (ASU) in the GPI adaptive optics system. On sky, the pixel scale and the north angle are determined using a number of known binary or multiple systems and Solar System objects, a subsample of which had concurrent measurements at Keck Observatory. Our current estimate of the GPI pixel scale is 14.14 ± 0.01 millarcseconds/pixel, and the north angle is -1.00 ± 0.03°. Distortion is shown to be small, with an average positional residual of 0.26 pixels over the field of view, and is corrected using a 5th order polynomial. We also present results from Monte Carlo simulations of the GPI Exoplanet Survey (GPIES) assuming GPI achieves ~1 milliarcsecond relative astrometric precision. We find that with this precision, we will be able to constrain the eccentricities of all detected planets, and possibly determine the underlying eccentricity distribution of widely separated Jovians

    High-contrast imaging in the Hyades with snapshot LOCI

    Full text link
    To image faint substellar companions obscured by the stellar halo and speckles, scattered light from the bright primary star must be removed in hardware or software. We apply the "locally-optimized combination of images" (LOCI) algorithm to 1-minute Keck Observatory snapshots of GKM dwarfs in the Hyades using source diversity to determine the most likely PSF. We obtain a mean contrast of 10^{-2} at 0.01", 10^{-4} at <1", and 10^{-5} at 5". New brown dwarf and low-mass stellar companions to Hyades primaries are found in a third of the 84 targeted systems. This campaign shows the efficacy of LOCI on snapshot imaging as well as on bright wide binaries with off-axis LOCI, reaching contrasts sufficient for imaging 625-Myr late-L/early-T dwarfs purely in post-processing.Comment: 12 pages, 12 figures, to appear in SPIE Astronomy 2012, paper 8447-16

    M-band Imaging of the HR 8799 Planetary System Using an Innovative LOCI-based Background Subtraction Technique

    Full text link
    Multi-wavelength observations/spectroscopy of exoplanetary atmospheres are the basis of the emerging exciting field of comparative exoplanetology. The HR 8799 planetary system is an ideal laboratory to study our current knowledge gap between massive field brown dwarfs and the cold 5-Gyr old Solar system planets. The HR 8799 planets have so far been imaged at J- to L-band, with only upper limits available at M-band. We present here deep high-contrast Keck II adaptive optics M-band observations that show the imaging detection of 3 of the 4 currently known HR 8799 planets. Such detections were made possible due to the development of an innovative LOCI-based background subtraction scheme that is 3 times more efficient than a classical median background subtraction for Keck II AO data, representing a gain in telescope time of up to a factor of 9. These M-band detections extend the broad band photometric coverage out to about 5 microns and provide access to the strong CO fundamental absorption band at 4.5microns. The new M-band photometry shows that the HR 8799 planets are located near the L/T-type dwarf transition, similar to what was found by other studies. We also confirm that the best atmospheric fits are consistent with low surface gravity, dusty and non-equilibrium CO/CH4 chemistry models.Comment: 10 pages, 4 figures, 1 table, accepted in ApJ

    Detection of Carbon Monoxide and Water Absorption Lines in an Exoplanet Atmosphere

    Full text link
    Determining the atmospheric structure and chemical composition of an exoplanet remains a formidable goal. Fortunately, advancements in the study of exoplanets and their atmospheres have come in the form of direct imaging - spatially resolving the planet from its parent star - which enables high-resolution spectroscopy of self-luminous planets in Jovian-like orbits. Here, we present a spectrum with numerous, well-resolved, molecular lines from both water and carbon monoxide from a massive planet orbiting less than 40 AU from the star HR 8799. These data reveal the planet's chemical composition, atmospheric structure, and surface gravity, confirming that it is indeed a young planet. The spectral lines suggest an atmospheric carbon-to-oxygn ratio greater than the host star's, providing hints about the planet's formation.Comment: Accepted for publication in Science. Published online on March 14, 2013. 24 pages (main text and supplementary materials), 8 figures. Attachments to the supplementary material are available on Science websit

    The International Deep Planet Survey II: The frequency of directly imaged giant exoplanets with stellar mass

    Full text link
    Radial velocity and transit methods are effective for the study of short orbital period exoplanets but they hardly probe objects at large separations for which direct imaging can be used. We carried out the international deep planet survey of 292 young nearby stars to search for giant exoplanets and determine their frequency. We developed a pipeline for a uniform processing of all the data that we have recorded with NIRC2/Keck II, NIRI/Gemini North, NICI/Gemini South, and NACO/VLT for 14 years. The pipeline first applies cosmetic corrections and then reduces the speckle intensity to enhance the contrast in the images. The main result of the international deep planet survey is the discovery of the HR 8799 exoplanets. We also detected 59 visual multiple systems including 16 new binary stars and 2 new triple stellar systems, as well as 2,279 point-like sources. We used Monte Carlo simulations and the Bayesian theorem to determine that 1.05[+2.80-0.70]% of stars harbor at least one giant planet between 0.5 and 14M_J and between 20 and 300 AU. This result is obtained assuming uniform distributions of planet masses and semi-major axes. If we consider power law distributions as measured for close-in planets instead, the derived frequency is 2.30[+5.95-1.55]%, recalling the strong impact of assumptions on Monte Carlo output distributions. We also find no evidence that the derived frequency depends on the mass of the hosting star, whereas it does for close-in planets. The international deep planet survey provides a database of confirmed background sources that may be useful for other exoplanet direct imaging surveys. It also puts new constraints on the number of stars with at least one giant planet reducing by a factor of two the frequencies derived by almost all previous works.Comment: 83 pages, 13 figures, 15 Tables, accepted in A&
    corecore