3,403 research outputs found

    Radiation reaction and the self-force for a point mass in general relativity

    Full text link
    A point particle of mass m moving on a geodesic creates a perturbation h, of the spacetime metric g, that diverges at the particle. Simple expressions are given for the singular m/r part of h and its quadrupole distortion caused by the spacetime. Subtracting these from h leaves a remainder h^R that is C^1. The self-force on the particle from its own gravitational field corrects the worldline at O(m) to be a geodesic of g+h^R. For the case that the particle is a small non-rotating black hole, an approximate solution to the Einstein equations is given with error of O(m^2) as m approaches 0.Comment: 4 pages, RevTe

    ``Fermi Liquid'' Shell Model Approach to Composite Fermion Excitation Spectra in Fractional Quantum Hall States

    Full text link
    Numerical results for the energy spectra of NN electrons on a spherical surface are used as input data to determine the quasiparticle energies and the pairwise ``Fermi liquid'' interactions of composite Fermion (CF) excitations in fractional quantum Hall systems. The quasiparticle energies and their interactions are then used to determine the energy spectra, EE vs total angular momentum LL, of states containing more than two quasiparticles. The qualitative agreement with the numerical results gives a remarkable new confirmation of the CF picture.Comment: LaTex, 4 pages, including 4 .eps-figures, to be appear in pr

    The Composite Fermion Hierarchy: Condensed States of Composite Fermion Excitations?

    Full text link
    A composite Fermion hierarchy theory is constructed in a way related to the original Haldane picture by applying the composite Fermion (CF) transformation to quasiparticles of Jain states. It is shown that the Jain theory coincides with the Haldane hierarchy theory for principal CF fillings. Within the Fermi liquid approach for few electron systems on the sphere a simple interpretation of many-quasiparticle spectra is given and provides an explanation of failure of CF hierarchy picture when applied to the hierarchical 4/114/11 state.Comment: 6 pages, Revtex, 4 figures in PostScript, submitted to Phys. Rev. Let

    Self-force of a scalar field for circular orbits about a Schwarzschild black hole

    Full text link
    The foundations are laid for the numerical computation of the actual worldline for a particle orbiting a black hole and emitting gravitational waves. The essential practicalities of this computation are here illustrated for a scalar particle of infinitesimal size and small but finite scalar charge. This particle deviates from a geodesic because it interacts with its own retarded field \psi^\ret. A recently introduced Green's function G^\SS precisely determines the singular part, \psi^\SS, of the retarded field. This part exerts no force on the particle. The remainder of the field \psi^\R = \psi^\ret - \psi^\SS is a vacuum solution of the field equation and is entirely responsible for the self-force. A particular, locally inertial coordinate system is used to determine an expansion of \psi^\SS in the vicinity of the particle. For a particle in a circular orbit in the Schwarzschild geometry, the mode-sum decomposition of the difference between \psi^\ret and the dominant terms in the expansion of \psi^\SS provide a mode-sum decomposition of an approximation for ψR\psi^\R from which the self-force is obtained. When more terms are included in the expansion, the approximation for ψR\psi^\R is increasingly differentiable, and the mode-sum for the self-force converges more rapidly.Comment: RevTex, 31 pages, 1 figure, modified abstract, more details of numerical method

    Very-high energy gamma-ray astronomy: A 23-year success story in high-energy astroparticle physics

    Full text link
    Very-high energy (VHE) gamma quanta contribute only a minuscule fraction - below one per million - to the flux of cosmic rays. Nevertheless, being neutral particles they are currently the best "messengers" of processes from the relativistic/ultra-relativistic Universe because they can be extrapolated back to their origin. The window of VHE gamma rays was opened only in 1989 by the Whipple collaboration, reporting the observation of TeV gamma rays from the Crab nebula. After a slow start, this new field of research is now rapidly expanding with the discovery of more than 150 VHE gamma-ray emitting sources. Progress is intimately related with the steady improvement of detectors and rapidly increasing computing power. We give an overview of the early attempts before and around 1989 and the progress after the pioneering work of the Whipple collaboration. The main focus of this article is on the development of experimental techniques for Earth-bound gamma-ray detectors; consequently, more emphasis is given to those experiments that made an initial breakthrough rather than to the successors which often had and have a similar (sometimes even higher) scientific output as the pioneering experiments. The considered energy threshold is about 30 GeV. At lower energies, observations can presently only be performed with balloon or satellite-borne detectors. Irrespective of the stormy experimental progress, the success story could not have been called a success story without a broad scientific output. Therefore we conclude this article with a summary of the scientific rationales and main results achieved over the last two decades.Comment: 45 pages, 38 figures, review prepared for EPJ-H special issue "Cosmic rays, gamma rays and neutrinos: A survey of 100 years of research

    Dissipative Chaos in Semiconductor Superlattices

    Full text link
    We consider the motion of ballistic electrons in a miniband of a semiconductor superlattice (SSL) under the influence of an external, time-periodic electric field. We use the semi-classical balance-equation approach which incorporates elastic and inelastic scattering (as dissipation) and the self-consistent field generated by the electron motion. The coupling of electrons in the miniband to the self-consistent field produces a cooperative nonlinear oscillatory mode which, when interacting with the oscillatory external field and the intrinsic Bloch-type oscillatory mode, can lead to complicated dynamics, including dissipative chaos. For a range of values of the dissipation parameters we determine the regions in the amplitude-frequency plane of the external field in which chaos can occur. Our results suggest that for terahertz external fields of the amplitudes achieved by present-day free electron lasers, chaos may be observable in SSLs. We clarify the nature of this novel nonlinear dynamics in the superlattice-external field system by exploring analogies to the Dicke model of an ensemble of two-level atoms coupled with a resonant cavity field and to Josephson junctions.Comment: 33 pages, 8 figure

    Which blazars are neutrino loud?

    Get PDF
    Protons accelerated in the cores of active galactic nuclei can effectively produce neutrinos only if the soft radiation background in the core is sufficiently high. We find restrictions on the spectral properties and luminosity of blazars under which they can be strong neutrino sources. We analyze the possibility that neutrino flux is highly beamed along the rotation axis of the central black hole. The enhancement of neutrino flux compared to GeV gamma-ray flux from a given source makes the detection of neutrino point sources more probable. At the same time the smaller open angle reduces the number of possible neutrino-loud blazars compared to the number of gamma-ray loud ones. We present the table of 15 blazars which are the most likely candidates for the detection by future neutrino telescopes.Comment: 9 pages, 5 figures, version to be published in PR

    Energy spectra of fractional quantum Hall systems in the presence of a valence hole

    Full text link
    The energy spectrum of a two-dimensional electron gas (2DEG) in the fractional quantum Hall regime interacting with an optically injected valence band hole is studied as a function of the filling factor ν\nu and the separation dd between the electron and hole layers. The response of the 2DEG to the hole changes abruptly at dd of the order of the magnetic length λ\lambda. At d<λd<\lambda, the hole binds electrons to form neutral (XX) or charged (X−X^-) excitons, and the photoluminescence (PL) spectrum probes the lifetimes and binding energies of these states rather than the original correlations of the 2DEG. The ``dressed exciton'' picture (in which the interaction between an exciton and the 2DEG was proposed to merely enhance the exciton mass) is questioned. Instead, the low energy states are explained in terms of Laughlin correlations between the constituent fermions (electrons and X−X^-'s) and the formation of two-component incompressible fluid states in the electron--hole plasma. At d>2λd>2\lambda, the hole binds up to two Laughlin quasielectrons (QE) of the 2DEG to form fractionally charged excitons hhQEn_n. The previously found ``anyon exciton'' hhQE3_3 is shown to be unstable at any value of dd. The critical dependence of the stability of different hhQEn_n complexes on the presence of QE's in the 2DEG leads to the observed discontinuity of the PL spectrum at ν=13\nu={1\over3} or 23{2\over3}.Comment: 16 pages, 14 figures, submitted to PR

    Preliminary Results from Integrating Compton Photon Polarimetry in Hall A of Jefferson Lab

    Full text link
    A wide range of nucleon and nuclear structure experiments in Jefferson Lab's Hall A require precise, continuous measurements of the polarization of the electron beam. In our Compton polarimeter, electrons are scattered off photons in a Fabry-Perot cavity; by measuring an asymmetry in the integrated signal of the scattered photons detected in a GSO crystal, we can make non-invasive, continuous measurements of the beam polarization. Our goal is to achieve 1% statistical error within two hours of running. We discuss the design and commissioning of an upgrade to this apparatus, and report preliminary results for experiments conducted at beam energies from 3.5 to 5.9 GeV and photon rates from 5 to 100 kHz.Comment: 6 pages, 7 figures. To appear in the Proceedings of the International Nuclear Physics Conference (INPC 2010), July 4-9 2010, Vancouver, Canada (Journal of Physics: Conference Series
    • …
    corecore