Abstract

The foundations are laid for the numerical computation of the actual worldline for a particle orbiting a black hole and emitting gravitational waves. The essential practicalities of this computation are here illustrated for a scalar particle of infinitesimal size and small but finite scalar charge. This particle deviates from a geodesic because it interacts with its own retarded field \psi^\ret. A recently introduced Green's function G^\SS precisely determines the singular part, \psi^\SS, of the retarded field. This part exerts no force on the particle. The remainder of the field \psi^\R = \psi^\ret - \psi^\SS is a vacuum solution of the field equation and is entirely responsible for the self-force. A particular, locally inertial coordinate system is used to determine an expansion of \psi^\SS in the vicinity of the particle. For a particle in a circular orbit in the Schwarzschild geometry, the mode-sum decomposition of the difference between \psi^\ret and the dominant terms in the expansion of \psi^\SS provide a mode-sum decomposition of an approximation for ψR\psi^\R from which the self-force is obtained. When more terms are included in the expansion, the approximation for ψR\psi^\R is increasingly differentiable, and the mode-sum for the self-force converges more rapidly.Comment: RevTex, 31 pages, 1 figure, modified abstract, more details of numerical method

    Similar works

    Full text

    thumbnail-image

    Available Versions

    Last time updated on 01/04/2019