The foundations are laid for the numerical computation of the actual
worldline for a particle orbiting a black hole and emitting gravitational
waves. The essential practicalities of this computation are here illustrated
for a scalar particle of infinitesimal size and small but finite scalar charge.
This particle deviates from a geodesic because it interacts with its own
retarded field \psi^\ret. A recently introduced Green's function G^\SS
precisely determines the singular part, \psi^\SS, of the retarded field. This
part exerts no force on the particle. The remainder of the field \psi^\R =
\psi^\ret - \psi^\SS is a vacuum solution of the field equation and is
entirely responsible for the self-force. A particular, locally inertial
coordinate system is used to determine an expansion of \psi^\SS in the
vicinity of the particle. For a particle in a circular orbit in the
Schwarzschild geometry, the mode-sum decomposition of the difference between
\psi^\ret and the dominant terms in the expansion of \psi^\SS provide a
mode-sum decomposition of an approximation for ψR from which the
self-force is obtained. When more terms are included in the expansion, the
approximation for ψR is increasingly differentiable, and the mode-sum
for the self-force converges more rapidly.Comment: RevTex, 31 pages, 1 figure, modified abstract, more details of
numerical method