13 research outputs found

    An integrated command and control architecture concept for unmanned systems in the year 2030

    Get PDF
    U.S. Forces require an integrated Command and Control Architecture that enables operations of a dynamic mix of manned and unmanned systems. The level of autonomous behavior correlates to: 1) the amount of trust with the reporting vehicles, and 2) the multi-spectral perspective of the observations. The intent to illuminate the architectural issues for force protection in 2030 was based on a multi-phased analytical model of High Value Unit (HVU) defense. The results showed that autonomous unmanned aerial vehicles are required to defeat high-speed incoming missiles. To evaluate the level of autonomous behavior required for an integrated combat architecture, geometric distributions were modeled to determine force positioning, based on a scenario driven Detect-to-Engage timeline. Discrete event simulation was used to schedule operations, and a datalink budget assessment of communications to determine the critical failure paths in the the integrated combat architecture. The command and control principles used in the integrated combat architecture were based on Boyd's OODA (Obseve, Orient, Decide, and Act) Loop. A conservative fleet size estimate, given the uncertainties of the coverage overlap and radar detection range, a fleet size of 35 should be anticipated given an UAV detection range of 20km and radar coverage overlap of 4 seconds.http://archive.org/details/anintegratedcomm109455244US Navy (USN) authorsApproved for public release; distribution is unlimited

    To Conquer or Compel: War, Peace, and Economic Development

    No full text

    Materials for the Study of African Military History

    No full text

    1996 Annual Selected Bibliography

    No full text
    corecore