43 research outputs found

    Influence of corona charging in cellular polyethlene film

    Full text link
    [En] Cellular polymers have recently attracted attention for their property of exhibiting a piezoelectric constant when they are electrically charged. The electrostatic charge generated in the voids by the internal discharges creates and internal macrodipole which is responsible for the piezoelectric effect. Charging by corona discharge is the most used method for cellular polymers. Many works has been published on polypropylene and polyethylene films mainly focused on the required expansion process or on the results obtained for raw cellular materials electrically activated. Our work is based on commercial polyethylene cellular films which have been physically characterized and electrically activated. The effect of thermal treatment, physical uniaxial or biaxial stretching and corona charging was investigated. The new method of corona charging improved the piezoelectric constant under other activation conditions.This work has been developed under the project Intelligent Materials with Mechanical and Electrical Properties interaction (E-MAT)" which has been submitted for funding with reference number IMDEEA/2011/13 to the call of Technological Centers of IMPIVA Network 2011, Strategic development program (action 1, R+D projects) financed by the Generalitat Valenciana through the Instituto de la Mediana y Pequena Empresa Valenciana (IMPIVA) and the European Regional Development Fund (ERDF).Ortega Braña, GE.; Llovera Segovia, P.; Magraner Bella, F.; Quijano Lopez, A. (2011). Influence of corona charging in cellular polyethlene film. Journal of Physics: Conference Series. 301:1-4. doi:10.1088/1742-6596/301/1/012054S14301Fukada, E. (2000). History and recent progress in piezoelectric polymers. IEEE Transactions on Ultrasonics, Ferroelectrics and Frequency Control, 47(6), 1277-1290. doi:10.1109/58.883516Sessler, G. M., & Hillenbrand, J. (1999). Electromechanical response of cellular electret films. Applied Physics Letters, 75(21), 3405-3407. doi:10.1063/1.125308Hillenbrand, J., & Sessler, G. M. (2000). Piezoelectricity in cellular electret films. IEEE Transactions on Dielectrics and Electrical Insulation, 7(4), 537-542. doi:10.1109/94.868074Paajanen, M., Välimäki, H., & Lekkala, J. (2000). Modelling the electromechanical film (EMFi). Journal of Electrostatics, 48(3-4), 193-204. doi:10.1016/s0304-3886(99)00065-0Gerhard-Multhaupt, R. (2002). Less can be more. Holes in polymers lead to a new paradigm of piezoelectric materials for electret transducers. IEEE Transactions on Dielectrics and Electrical Insulation, 9(5), 850-859. doi:10.1109/tdei.2002.1038668Wegener, M., & Bauer, S. (2005). Microstorms in Cellular Polymers: A Route to Soft Piezoelectric Transducer Materials with Engineered Macroscopic Dipoles. ChemPhysChem, 6(6), 1014-1025. doi:10.1002/cphc.200400517Hillenbrand, J., Behrendt, N., Mohmeyer, N., Altsadt, V., Schmidt, H.-W., & Sessler, G. M. (s. f.). Charge retention in biaxially-oriented polypropylene films containing various additives. 2005 12th International Symposium on Electrets. doi:10.1109/ise.2005.1612375Xiaoqing Zhang, Sessler, G. M., & Hillenbrand, J. (s. f.). Optimization of Piezoelectric Properties of Cellular Polypropylene Films by Repeated Expansion. 2005 12th International Symposium on Electrets. doi:10.1109/ise.2005.161231

    Complex bifurcation maps in electroelastic elastomeric plates

    Full text link
    [EN] Stress-strain relationships for rubbery materials are highly non-linear. In this work, a particular configuration of electroactive material is considered: an isotropic, incompressible electroelastic squared plate is subjected to equal biaxial homogeneous deformation and a scalar electrical potential is applied on the sides of compliant electrodes. This case is analysed according to two methodologies: the Hessian approach and the use of incremental deformation together with increment in the electric displacement. First, an extended Mooney Rivlin model is considered for the material and then an Ogden model is also analysed. Results, show, that despite of available experimental results, some predictions can be made and the pertinent analysis show complex bifurcation maps. This can help in the future progress in the knowledge of the instabilities and bifurcation phenomena which should appear in these materials. The present paper has been mainly motivated by the work of Ogden and DorfmannDĂ­az Calleja, R.; Llovera Segovia, P.; Quijano Lopez, A. (2017). Complex bifurcation maps in electroelastic elastomeric plates. International Journal of Solids and Structures. 113:70-84. doi:10.1016/j.ijsolstr.2016.12.021S708411

    Reliable Detection of Rotor Winding Asymmetries in Wound Rotor Induction Motors via Integral Current Analysis

    Full text link
    (c) 2017 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works[EN] Current analysis has been widely employed in academy and industry for the diagnosis of rotor damages in cage induction motors. The conventional approach based on the FFT analysis of steady-state current (MCSA) has been recently complemented with the development of alternative techniques that rely on the time-frequency analysis of transient quantities of the machine. These techniques may bring important advantages that are related to the avoidance of eventual false indications provided by the classical MCSA. Moreover, their application is also suitable for variable speed conditions. However, the application of current-based methodologies to wound rotor induction motors (WRIM) has been much less studied and, hence, their validation in field WRIM is scarce. The present work proposes the application of an integral methodology based on the analysis of both stationary and transient currents for the diagnosis of winding asymmetries in WRIM. The method, based on up to five different fault evidences, is validated in laboratory motors and it is subsequently applied to a large field motor (1,500 kW) that was showing signs of abnormal rotor functioning. The results prove that the method is of interest for the field since it helps to ratify without ambiguity the existence of eventual asymmetries in the rotor windings, with no interference with the machine operation. However, due to the complex constructive nature of the rotor winding as well as the presence of auxiliary systems (slip rings, brushes, contactors, etc ), once the fault presence is detected, it may be interesting the utilization of complementary tools to accurately locate the root cause of the asymmetry.This work was supported in part by the Spanish Ministerio de Economia y Competitividad and in part by the Fondo Europeo de Desarrollo Regional Program in the framework of the Proyectos i+d del Subprograma de Generacion de Conocimiento, Programa Estatal de Fomento de la Investigacion Cientifica y Tecnica de Excelencia under Grant dpi2014-52842-P.Antonino-Daviu, J.; Quijano Lopez, A.; Climente Alarcón, V.; Garín-Abellán, C. (2017). Reliable Detection of Rotor Winding Asymmetries in Wound Rotor Induction Motors via Integral Current Analysis. IEEE Transactions on Industry Applications. 53(3):2040-2048. https://doi.org/10.1109/TIA.2017.2672524S2040204853

    Charging of Piezoelectric Cellular Polypropylene Film by Means of a Series Dielectric Layer

    Full text link
    [EN] Piezoelectric polymer cellular films have been developed and improved in the past decades. These piezoelectric materials are based on the polarization of the internal cells by means of induced discharges in the gas inside the cells. Internal discharges are driven by an external applied electric field. With this polarization method, cellular polypropylene (PP) polymers exhibit a high piezoelectric coefficient d(33) and have been investigated because of their low dielectric polarization, high resistivity, and flexibility. Charging polymers foams is normally obtained by applying a corona discharge to the surface with a single tip electrode-plane arrangement or a triode electrode, which consists of a tip electrode-plane structure with a controlled potential intermediate mesh. Corona charging allows the surface potential of the sample to rise without breakdown or surface flashover. A charging method has been developed without corona discharge, and this has provided good results. In our work, a method has been developed to polarize polypropylene foams by applying an insulated high-voltage electrode on the surface of the sample. The dielectric layer in series with the sample allows for a high internal electric field to be reached in the sample but avoids dielectric breakdown of the sample. The distribution of the electric field between the sample and the dielectric barrier has been calculated. Experimental results with three different electrodes present good outcome in agreement with the calculations. High d(33) constants of about 880 pC/N have been obtained. Mapping of the d(33) constant on the surface has also been carried out showing good homogeneity on the area under the electrode.Llovera Segovia, P.; Ortega-Braña, G.; Fuster Roig, VL.; Quijano-Lopez, A. (2021). Charging of Piezoelectric Cellular Polypropylene Film by Means of a Series Dielectric Layer. Polymers. 13(3):1-12. https://doi.org/10.3390/polym13030333S11213

    Dynamic clustering segmentation applied to load profiles of energy consumption from Spanish customers

    Full text link
    [EN] The following article describes the work of dynamic segmentation of daily load profiles throughout years 2008 and 2009, of a representative sample of Spanish residential customers. The technique applied is classification of the energy consumption time series of load profiles by means of dynamic clustering algorithms. The techniques used and analysis performed prove adequate as a fast tool to classify clients according to their energy consumption patterns, as well as to evaluate their overall energy consumption trends at a glance. The segmentation of the energy consumption load profiles is performed, and the results are analyzed and discussed.The works developed in this document have been possible thanks to Iberdrola Distribucion Electrica S.A.U. and the development of the GAD project. The GAD or "Active Demand Management" (in Spanish) project was a project supported by the Spanish Government, and participated by 14 different companies and 14 research centers. It was sponsored by the CDTI (Technological Development Centre of the Ministry of Science and Innovation of Spain), and financed by the INGENIO 2010 program.Benítez Sánchez, IJ.; Quijano-Lopez, A.; Diez, J.; Delgado Espinos, I. (2014). Dynamic clustering segmentation applied to load profiles of energy consumption from Spanish customers. International Journal of Electrical Power & Energy Systems. 55:437-448. https://doi.org/10.1016/j.ijepes.2013.09.022S4374485

    Relationship between surface potential and d33 constant in cellular piezoelectric polymers

    Full text link
    [EN] The development of cellular piezoelectric polymers has shown very promising results thanks to their high d33 piezoelectric constants which make them candidates for many applications. Cellular piezoelectric polymers, known as ferroelectrets, are obtained by means of an activation process which consists in generating an internal dipole with electrostatic charges produced by internal electric discharges. The most common system for this activation process is the application of a corona discharge on the surface of the sample in order to produce a high internal electric field. The theoretical electrostatic model of the process which is widely used is the Sessler model which relates the internal surface charge density, the air and polymer layers thickness, the dielectric permittivity of the polymer and the Young's Modulus of the cellular material to the d33 piezoelectric constant. In our work, we relate the internal charges of the material with the d33 piezoelectric constant by means of a surface potential scanning of cellular polypropylene biaxially stretched samples. Samples were charged by a corona discharge controlled with a triode electrode. Surface potentials were high enough to generate internal discharges and obtain measurable d33 piezoelectric constants but low enough to be measured with spatial resolution by means of a 3 kV electrostatic probe. Surface potential profiles showed some deviations from the expected bellshape profile due to the internal electric field generated by the internal static charge. These deviations can be numerically related to the measured d33 piezoelectric constant with the electrostatic Sessler model.Ortega Braña, GE.; Llovera Segovia, P.; Domínguez-Lagunilla, M.; Quijano Lopez, A. (2017). Relationship between surface potential and d33 constant in cellular piezoelectric polymers. Journal of Electrostatics. 88:94-99. doi:10.1016/j.elstat.2016.12.014S94998

    Sustainable Carbon as Efficient Support for Metal-Based Nanocatalyst: Applications in Energy Harvesting and Storage

    Full text link
    [EN] Sustainable activated carbon can be obtained from the pyrolysis/activation of biomass wastes coming from different origins. Carbon obtained in this way shows interesting properties, such as high surface area, electrical conductivity, thermal and chemical stability, and porosity. These characteristics among others, such as a tailored pore size distribution and the possibility of functionalization, lead to an increased use of activated carbons in catalysis. The use of activated carbons from biomass origins is a step forward in the development of more sustainable processes enhancing material recycling and reuse in the frame of a circular economy. In this article, a perspective of different heterogeneous catalysts based on sustainable activated carbon from biomass origins will be analyzed focusing on their properties and catalytic performance for determined energy-related applications. In this way, the article aims to give the reader a scope of the potential of these tailor-made sustainable materials as a support in heterogeneous catalysis and future developments needed to improve catalyst performance. The selected applications are those related with H2 energy and the production of biomethane for energy through CO2 methanation.This research was funded by the Centro de Desarrollo Tecnologico Industrial-CDTI (ALMAGRID Project-CER-20191006), by the Instituto Valenciano de Competitividad Empresarial-IVACE-FEDER (BIO3 Project-IMDEEA/2019/44) and by the Agencia Valenciana de Investigacion-AVI (REWACER Project INNEST00/19/050).Buaki-Sogo, M.; Zubizarreta Saenz De Zaitegui, L.; García Pellicer, M.; Quijano-Lopez, A. (2020). Sustainable Carbon as Efficient Support for Metal-Based Nanocatalyst: Applications in Energy Harvesting and Storage. Molecules. 25(14):1-17. https://doi.org/10.3390/molecules25143123S1172514Updated Bioeconomy Strategyhttps://ec.europa.eu/knowledge4policy/node/34337_esSharma, H. K., Xu, C., & Qin, W. (2017). Biological Pretreatment of Lignocellulosic Biomass for Biofuels and Bioproducts: An Overview. Waste and Biomass Valorization, 10(2), 235-251. doi:10.1007/s12649-017-0059-yGonzález-García, S., Gullón, B., Rivas, S., Feijoo, G., & Moreira, M. T. (2016). Environmental performance of biomass refining into high-added value compounds. Journal of Cleaner Production, 120, 170-180. doi:10.1016/j.jclepro.2016.02.015Liu, W.-J., Jiang, H., & Yu, H.-Q. (2019). Emerging applications of biochar-based materials for energy storage and conversion. Energy & Environmental Science, 12(6), 1751-1779. doi:10.1039/c9ee00206eManeerung, T., Liew, J., Dai, Y., Kawi, S., Chong, C., & Wang, C.-H. (2016). Activated carbon derived from carbon residue from biomass gasification and its application for dye adsorption: Kinetics, isotherms and thermodynamic studies. Bioresource Technology, 200, 350-359. doi:10.1016/j.biortech.2015.10.047Hu, B., Wang, K., Wu, L., Yu, S.-H., Antonietti, M., & Titirici, M.-M. (2010). Engineering Carbon Materials from the Hydrothermal Carbonization Process of Biomass. Advanced Materials, 22(7), 813-828. doi:10.1002/adma.200902812Xiu, S., Shahbazi, A., & Li, R. (2017). Characterization, Modification and Application of Biochar for Energy Storage and Catalysis: A Review. Trends in Renewable Energy, 3(1), 86-101. doi:10.17737/tre.2017.3.1.0033Khezami, L., Chetouani, A., Taouk, B., & Capart, R. (2005). Production and characterisation of activated carbon from wood components in powder: Cellulose, lignin, xylan. Powder Technology, 157(1-3), 48-56. doi:10.1016/j.powtec.2005.05.009Contescu, C., Adhikari, S., Gallego, N., Evans, N., & Biss, B. (2018). Activated Carbons Derived from High-Temperature Pyrolysis of Lignocellulosic Biomass. C, 4(3), 51. doi:10.3390/c4030051IOANNIDOU, O., & ZABANIOTOU, A. (2007). Agricultural residues as precursors for activated carbon production—A review. Renewable and Sustainable Energy Reviews, 11(9), 1966-2005. doi:10.1016/j.rser.2006.03.013Namaalwa, J., Sankhayan, P. L., & Hofstad, O. (2007). A dynamic bio-economic model for analyzing deforestation and degradation: An application to woodlands in Uganda. Forest Policy and Economics, 9(5), 479-495. doi:10.1016/j.forpol.2006.01.001Tomczyk, A., Sokołowska, Z., & Boguta, P. (2020). Biochar physicochemical properties: pyrolysis temperature and feedstock kind effects. Reviews in Environmental Science and Bio/Technology, 19(1), 191-215. doi:10.1007/s11157-020-09523-3Lee, J., Kim, K.-H., & Kwon, E. E. (2017). Biochar as a Catalyst. Renewable and Sustainable Energy Reviews, 77, 70-79. doi:10.1016/j.rser.2017.04.002Prati, L., Bergna, D., Villa, A., Spontoni, P., Bianchi, C. L., Hu, T., … Lassi, U. (2018). Carbons from second generation biomass as sustainable supports for catalytic systems. Catalysis Today, 301, 239-243. doi:10.1016/j.cattod.2017.03.007Shen, Y., Zhao, P., & Shao, Q. (2014). Porous silica and carbon derived materials from rice husk pyrolysis char. Microporous and Mesoporous Materials, 188, 46-76. doi:10.1016/j.micromeso.2014.01.005Azargohar, R., & Dalai, A. K. (2008). Steam and KOH activation of biochar: Experimental and modeling studies. Microporous and Mesoporous Materials, 110(2-3), 413-421. doi:10.1016/j.micromeso.2007.06.047Weber, K., & Quicker, P. (2018). Properties of biochar. Fuel, 217, 240-261. doi:10.1016/j.fuel.2017.12.054Lam, E., & Luong, J. H. T. (2014). Carbon Materials as Catalyst Supports and Catalysts in the Transformation of Biomass to Fuels and Chemicals. ACS Catalysis, 4(10), 3393-3410. doi:10.1021/cs5008393Thommes, M., Kaneko, K., Neimark, A. V., Olivier, J. P., Rodriguez-Reinoso, F., Rouquerol, J., & Sing, K. S. W. (2015). Physisorption of gases, with special reference to the evaluation of surface area and pore size distribution (IUPAC Technical Report). Pure and Applied Chemistry, 87(9-10), 1051-1069. doi:10.1515/pac-2014-1117Jagiello, J., Kenvin, J., Celzard, A., & Fierro, V. (2019). Enhanced resolution of ultra micropore size determination of biochars and activated carbons by dual gas analysis using N2 and CO2 with 2D-NLDFT adsorption models. Carbon, 144, 206-215. doi:10.1016/j.carbon.2018.12.028Jagiello, J., Kenvin, J., Ania, C. O., Parra, J. B., Celzard, A., & Fierro, V. (2020). Exploiting the adsorption of simple gases O2 and H2 with minimal quadrupole moments for the dual gas characterization of nanoporous carbons using 2D-NLDFT models. Carbon, 160, 164-175. doi:10.1016/j.carbon.2020.01.013Buaki-Sogo, M., Garcia, H., & Aprile, C. (2015). Imidazolium-based silica microreactors for the efficient conversion of carbon dioxide. Catalysis Science & Technology, 5(2), 1222-1230. doi:10.1039/c4cy01258eBuaki-Sogó, M., Vivian, A., Bivona, L. A., García, H., Gruttadauria, M., & Aprile, C. (2016). Imidazolium functionalized carbon nanotubes for the synthesis of cyclic carbonates: reducing the gap between homogeneous and heterogeneous catalysis. Catalysis Science & Technology, 6(24), 8418-8427. doi:10.1039/c6cy01068gSomerville, M., & Jahanshahi, S. (2015). The effect of temperature and compression during pyrolysis on the density of charcoal made from Australian eucalypt wood. Renewable Energy, 80, 471-478. doi:10.1016/j.renene.2015.02.013Brewer, C. E., Chuang, V. J., Masiello, C. A., Gonnermann, H., Gao, X., Dugan, B., … Davies, C. A. (2014). New approaches to measuring biochar density and porosity. Biomass and Bioenergy, 66, 176-185. doi:10.1016/j.biombioe.2014.03.059Anovitz, L. M., & Cole, D. R. (2015). Characterization and Analysis of Porosity and Pore Structures. Reviews in Mineralogy and Geochemistry, 80(1), 61-164. doi:10.2138/rmg.2015.80.04Wang, R., Sang, S., Zhu, D., Liu, S., & Yu, K. (2017). Pore characteristics and controlling factors of the Lower Cambrian Hetang Formation shale in Northeast Jiangxi, China. Energy Exploration & Exploitation, 36(1), 43-65. doi:10.1177/0144598717723814Pasel, J., Käßner, P., Montanari, B., Gazzano, M., Vaccari, A., Makowski, W., … Papp, H. (1998). Transition metal oxides supported on active carbons as low temperature catalysts for the selective catalytic reduction (SCR) of NO with NH3. Applied Catalysis B: Environmental, 18(3-4), 199-213. doi:10.1016/s0926-3373(98)00033-2Bazan, A., Nowicki, P., Półrolniczak, P., & Pietrzak, R. (2016). Thermal analysis of activated carbon obtained from residue after supercritical extraction of hops. Journal of Thermal Analysis and Calorimetry, 125(3), 1199-1204. doi:10.1007/s10973-016-5419-5Rodríguez-reinoso, F. (1998). The role of carbon materials in heterogeneous catalysis. Carbon, 36(3), 159-175. doi:10.1016/s0008-6223(97)00173-5Liu, W.-J., Jiang, H., & Yu, H.-Q. (2015). Development of Biochar-Based Functional Materials: Toward a Sustainable Platform Carbon Material. Chemical Reviews, 115(22), 12251-12285. doi:10.1021/acs.chemrev.5b00195Umeyama, T., & Imahori, H. (2012). Photofunctional Hybrid Nanocarbon Materials. The Journal of Physical Chemistry C, 117(7), 3195-3209. doi:10.1021/jp309149sNishihara, H., & Kyotani, T. (2012). Templated Nanocarbons for Energy Storage. Advanced Materials, 24(33), 4473-4498. doi:10.1002/adma.201201715Zhang, L., Xiao, J., Wang, H., & Shao, M. (2017). Carbon-Based Electrocatalysts for Hydrogen and Oxygen Evolution Reactions. ACS Catalysis, 7(11), 7855-7865. doi:10.1021/acscatal.7b02718Borenstein, A., Hanna, O., Attias, R., Luski, S., Brousse, T., & Aurbach, D. (2017). Carbon-based composite materials for supercapacitor electrodes: a review. Journal of Materials Chemistry A, 5(25), 12653-12672. doi:10.1039/c7ta00863eDai, L., Xue, Y., Qu, L., Choi, H.-J., & Baek, J.-B. (2015). Metal-Free Catalysts for Oxygen Reduction Reaction. Chemical Reviews, 115(11), 4823-4892. doi:10.1021/cr5003563Zhang, C., Lv, W., Tao, Y., & Yang, Q.-H. (2015). Towards superior volumetric performance: design and preparation of novel carbon materials for energy storage. Energy & Environmental Science, 8(5), 1390-1403. doi:10.1039/c5ee00389jMian, M. M., & Liu, G. (2018). Recent progress in biochar-supported photocatalysts: synthesis, role of biochar, and applications. RSC Advances, 8(26), 14237-14248. doi:10.1039/c8ra02258eXiong, X., Yu, I. K. M., Cao, L., Tsang, D. C. W., Zhang, S., & Ok, Y. S. (2017). A review of biochar-based catalysts for chemical synthesis, biofuel production, and pollution control. Bioresource Technology, 246, 254-270. doi:10.1016/j.biortech.2017.06.163Liu, J., Jiang, J., Meng, Y., Aihemaiti, A., Xu, Y., Xiang, H., … Chen, X. (2020). Preparation, environmental application and prospect of biochar-supported metal nanoparticles: A review. Journal of Hazardous Materials, 388, 122026. doi:10.1016/j.jhazmat.2020.122026Xia, Y., Yang, Z., & Zhu, Y. (2013). Porous carbon-based materials for hydrogen storage: advancement and challenges. Journal of Materials Chemistry A, 1(33), 9365. doi:10.1039/c3ta10583kBack, C.-K., Sandí, G., Prakash, J., & Hranisavljevic, J. (2006). Hydrogen Sorption on Palladium-Doped Sepiolite-Derived Carbon Nanofibers. The Journal of Physical Chemistry B, 110(33), 16225-16231. doi:10.1021/jp061925pBhat, V. V., Contescu, C. I., & Gallego, N. C. (2010). Kinetic effect of Pd additions on the hydrogen uptake of chemically-activated ultramicroporous carbon. Carbon, 48(8), 2361-2364. doi:10.1016/j.carbon.2010.02.025Cheon, Y. E., & Suh, M. P. (2009). Enhanced Hydrogen Storage by Palladium Nanoparticles Fabricated in a Redox-Active Metal-Organic Framework. Angewandte Chemie International Edition, 48(16), 2899-2903. doi:10.1002/anie.200805494Dufour, A., Celzard, A., Fierro, V., Broust, F., Courson, C., Zoulalian, A., & Rouzaud, J. N. (2015). Catalytic conversion of methane over a biomass char for hydrogen production: deactivation and regeneration by steam gasification. Applied Catalysis A: General, 490, 170-180. doi:10.1016/j.apcata.2014.10.038Dufour, A., Valin, S., Castelli, P., Thiery, S., Boissonnet, G., Zoulalian, A., & Glaude, P.-A. (2009). Mechanisms and Kinetics of Methane Thermal Conversion in a Syngas. Industrial & Engineering Chemistry Research, 48(14), 6564-6572. doi:10.1021/ie900343bMarshall, J. (2014). Solar energy: Springtime for the artificial leaf. Nature, 510(7503), 22-24. doi:10.1038/510022aLin, Y., Pan, Y., & Zhang, J. (2017). CoP nanorods decorated biomass derived N, P co-doped carbon flakes as an efficient hybrid catalyst for electrochemical hydrogen evolution. Electrochimica Acta, 232, 561-569. doi:10.1016/j.electacta.2017.03.042Liu, X., Zhang, M., Yu, D., Li, T., Wan, M., Zhu, H., … Yao, J. (2016). Functional materials from nature: honeycomb-like carbon nanosheets derived from silk cocoon as excellent electrocatalysts for hydrogen evolution reaction. Electrochimica Acta, 215, 223-230. doi:10.1016/j.electacta.2016.08.091Cui, W., Liu, Q., Xing, Z., Asiri, A. M., Alamry, K. A., & Sun, X. (2015). MoP nanosheets supported on biomass-derived carbon flake: One-step facile preparation and application as a novel high-active electrocatalyst toward hydrogen evolution reaction. Applied Catalysis B: Environmental, 164, 144-150. doi:10.1016/j.apcatb.2014.09.016Lai, F., Miao, Y.-E., Huang, Y., Zhang, Y., & Liu, T. (2015). Nitrogen-Doped Carbon Nanofiber/Molybdenum Disulfide Nanocomposites Derived from Bacterial Cellulose for High-Efficiency Electrocatalytic Hydrogen Evolution Reaction. ACS Applied Materials & Interfaces, 8(6), 3558-3566. doi:10.1021/acsami.5b06274Chen, W.-F., Iyer, S., Iyer, S., Sasaki, K., Wang, C.-H., Zhu, Y., … Fujita, E. (2013). Biomass-derived electrocatalytic composites for hydrogen evolution. Energy & Environmental Science, 6(6), 1818. doi:10.1039/c3ee40596fCarmo, M., Fritz, D. L., Mergel, J., & Stolten, D. (2013). A comprehensive review on PEM water electrolysis. International Journal of Hydrogen Energy, 38(12), 4901-4934. doi:10.1016/j.ijhydene.2013.01.151Benck, J. D., Chen, Z., Kuritzky, L. Y., Forman, A. J., & Jaramillo, T. F. (2012). Amorphous Molybdenum Sulfide Catalysts for Electrochemical Hydrogen Production: Insights into the Origin of their Catalytic Activity. ACS Catalysis, 2(9), 1916-1923. doi:10.1021/cs300451qKibsgaard, J., & Jaramillo, T. F. (2014). Molybdenum Phosphosulfide: An Active, Acid-Stable, Earth-Abundant Catalyst for the Hydrogen Evolution Reaction. Angewandte Chemie International Edition, 53(52), 14433-14437. doi:10.1002/anie.201408222Yuan, W., Wang, X., Zhong, X., & Li, C. M. (2016). CoP Nanoparticles in Situ Grown in Three-Dimensional Hierarchical Nanoporous Carbons as Superior Electrocatalysts for Hydrogen Evolution. ACS Applied Materials & Interfaces, 8(32), 20720-20729. doi:10.1021/acsami.6b05304Abghoui, Y., & Skúlason, E. (2017). Hydrogen Evolution Reaction Catalyzed by Transition-Metal Nitrides. The Journal of Physical Chemistry C, 121(43), 24036-24045. doi:10.1021/acs.jpcc.7b06811Humagain, G., MacDougal, K., MacInnis, J., Lowe, J. M., Coridan, R. H., MacQuarrie, S., & Dasog, M. (2018). Highly Efficient, Biochar-Derived Molybdenum Carbide Hydrogen Evolution Electrocatalyst. Advanced Energy Materials, 8(29), 1801461. doi:10.1002/aenm.201801461Vrubel, H., & Hu, X. (2012). Molybdenum Boride and Carbide Catalyze Hydrogen Evolution in both Acidic and Basic Solutions. Angewandte Chemie International Edition, 51(51), 12703-12706. doi:10.1002/anie.201207111Miao, M., Pan, J., He, T., Yan, Y., Xia, B. Y., & Wang, X. (2017). Molybdenum Carbide-Based Electrocatalysts for Hydrogen Evolution Reaction. Chemistry - A European Journal, 23(46), 10947-10961. doi:10.1002/chem.201701064Popczun, E. J., McKone, J. R., Read, C. G., Biacchi, A. J., Wiltrout, A. M., Lewis, N. S., & Schaak, R. E. (2013). Nanostructured Nickel Phosphide as an Electrocatalyst for the Hydrogen Evolution Reaction. Journal of the American Chemical Society, 135(25), 9267-9270. doi:10.1021/ja403440eCallejas, J. F., McEnaney, J. M., Read, C. G., Crompton, J. C., Biacchi, A. J., Popczun, E. J., … Schaak, R. E. (2014). Electrocatalytic and Photocatalytic Hydrogen Production from Acidic and Neutral-pH Aqueous Solutions Using Iron Phosphide Nanoparticles. ACS Nano, 8(11), 11101-11107. doi:10.1021/nn5048553Tian, J., Liu, Q., Cheng, N., Asiri, A. M., & Sun, X. (2014). Self-Supported Cu3P Nanowire Arrays as an Integrated High-Performance Three-Dimensional Cathode for Generating Hydrogen from Water. Angewandte Chemie International Edition, 53(36), 9577-9581. doi:10.1002/anie.201403842Li, J.-S., Wang, Y., Liu, C.-H., Li, S.-L., Wang, Y.-G., Dong, L.-Z., … Lan, Y.-Q. (2016). Coupled molybdenum carbide and reduced graphene oxide electrocatalysts for efficient hydrogen evolution. Nature Communications, 7(1). doi:10.1038/ncomms11204An, K., Xu, X., & Liu, X. (2017). Mo2C-Based Electrocatalyst with Biomass-Derived Sulfur and Nitrogen Co-Doped Carbon as a Matrix for Hydrogen Evolution and Organic Pollutant Removal. ACS Sustainable Chemistry & Engineering, 6(1), 1446-1455. doi:10.1021/acssuschemeng.7b03882Zhang, Y., Zuo, L., Zhang, L., Huang, Y., Lu, H., Fan, W., & Liu, T. (2016). Cotton Wool Derived Carbon Fiber Aerogel Supported Few-Layered MoSe2 Nanosheets As Efficient Electrocatalysts for Hydrogen Evolution. ACS Applied Materials & Interfaces, 8(11), 7077-7085. doi:10.1021/acsami.5b12772Zhu, Y. G., Wang, X., Jia, C., Yang, J., & Wang, Q. (2016). Redox-Mediated ORR and OER Reactions: Redox Flow Lithium Oxygen Batteries Enabled with a Pair of Soluble Redox Catalysts. ACS Catalysis, 6(9), 6191-6197. doi:10.1021/acscatal.6b01478Gong, K., Du, F., Xia, Z., Durstock, M., & Dai, L. (2009). Nitrogen-Doped Carbon Nanotube Arrays with High Electrocatalytic Activity for Oxygen Reduction. Science, 323(5915), 760-764. doi:10.1126/science.1168049Shao, M., Chang, Q., Dodelet, J.-P., & Chenitz, R. (2016). Recent Advances in Electrocatalysts for Oxygen Reduction Reaction. Chemical Reviews, 116(6), 3594-3657. doi:10.1021/acs.chemrev.5b00462Zhang, Z., Gao, X., Dou, M., Ji, J., & Wang, F. (2017). Biomass Derived N-Doped Porous Carbon Supported Single Fe Atoms as Superior Electrocatalysts for Oxygen Reduction. Small, 13(22), 1604290. doi:10.1002/smll.201604290Dong, Y., Zheng, L., Deng, Y., Liu, L., Zeng, J., Li, X., & Liao, S. (2018). Enhancement of Oxygen Reduction Performance of Biomass-Derived Carbon through Co-Doping with Early Transition Metal. Journal of The Electrochemical Society, 165(15), J3148-J3156. doi:10.1149/2.0201815jesYang, L., Zeng, X., Wang, D., & Cao, D. (2018). Biomass-derived FeNi alloy and nitrogen-codoped porous carbons as highly efficient oxygen reduction and evolution bifunctional electrocatalysts for rechargeable Zn-air battery. Energy Storage Materials, 12, 277-283. doi:10.1016/j.ensm.2018.02.011Liu, F., Peng, H., Qiao, X., Fu, Z., Huang, P., & Liao, S. (2014). High-performance doped carbon electrocatalyst derived from soybean biomass and promoted by zinc chloride. International Journal of Hydrogen Energy, 39(19), 10128-10134. doi:10.1016/j.ijhydene.2014.04.176Xiong, L., Chen, J.-J., Huang, Y.-X., Li, W.-W., Xie, J.-F., & Yu, H.-Q. (2015). An oxygen reduction catalyst derived from a robust Pd-reducing bacterium. Nano Energy, 12, 33-42. doi:10.1016/j.nanoen.2014.11.065Wang, G., Deng, Y., Yu, J., Zheng, L., Du, L., Song, H., & Liao, S. (2017). From Chlorella to Nestlike Framework Constructed with Doped Carbon Nanotubes: A Biomass-Derived, High-Performance, Bifunctional Oxygen Reduction/Evolution Catalyst. ACS Applied Materials & Interfaces, 9(37), 32168-32178. doi:10.1021/acsami.7b10668Lee, W. J., Li, C., Prajitno, H., Yoo, J., Patel, J., Yang, Y., & Lim, S. (2021). Recent trend in thermal catalytic low temperature CO2 methanation: A critical review. Catalysis Today, 368, 2-19. doi:10.1016/j.cattod.2020.02.017Ma, S., Tan, Y., & Han, Y. (2011). Methanation of syngas over coral reef-like Ni/Al2O3 catalysts. Journal of Natural Gas Chemistry, 20(4), 435-440. doi:10.1016/s1003-9953(10)60192-2Gao, J., Liu, Q., Gu, F., Liu, B., Zhong, Z., & Su, F. (2015). Recent advances in methanation catalysts for the production of synthetic natural gas. RSC Advances, 5(29), 22759-22776. doi:10.1039/c4ra16114aBailera, M., Lisbona, P., Romeo, L. M., & Espatolero, S. (2017). Power to Gas projects review: Lab, pilot and demo plants for storing renewable energy and CO2. Renewable and Sustainable Energy Reviews, 69, 292-312. doi:10.1016/j.rser.2016.11.130Aryal, N., Kvist, T., Ammam, F., Pant, D., & Ottosen, L. D. M. (2018). An overview of microbial biogas enrichment. Bioresource Technology, 264, 359-369. doi:10.1016/j.biortech.2018.06.013Thema, M., Weidlich, T., Hörl, M., Bellack, A., Mörs, F., Hackl, F., … Sterner, M. (2019). Biological CO2-Methanation: An Approach to Standardization. Energies, 12(9), 1670. doi:10.3390/en12091670Thema, M., Bauer, F., & Sterner, M. (2019). Power-to-Gas: Electrolysis and methanation status review. Renewable and Sustainable Energy Reviews, 112, 775-787. doi:10.1016/j.rser.2019.06.030Marques Mota, F., & Kim, D. H. (2019). From CO2methanation to ambitious long-chain hydrocarbons: alternative fuels paving the path to sustainability. Chemical Society Reviews, 48(1), 205-259. doi:10.1039/c8cs00527cVariava, M. F., Church, T. L., Noorbehesht, N., Harris, A. T., & Minett, A. I. (2015). Carbon-supported gas-cleaning catalysts enable syn gas methanation at atmospheric pressure. Catalysis Science & Technology, 5(1), 515-524. doi:10.1039/c4cy00696hLi, J., Zhou, Y., Xiao, X., Wang, W., Wang, N., Qian, W., & Chu, W. (2018). Regulation of Ni–CNT Interaction on Mn-Promoted Nickel Nanocatalysts Supported on Oxygenated CNTs for CO2 Selective Hydrogenation. ACS Applied Materials & Interfaces, 10(48), 41224-41236. doi:10.1021/acsami.8b04220Swalus, C., Jacquemin, M., Poleunis, C., Bertrand, P., & Ruiz, P. (2012). CO2 methanation on Rh/γ-Al2O3 catalyst at low temperature: «In situ» supply of hydrogen by Ni/activated carbon catalyst. Applied Catalysis B: Environmental, 125, 41-50. doi:10.1016/j.apcatb.2012.05.019Roldán, L., Marco, Y.

    Modelization of earth electrode excited by atmospheric discharges based on FEM

    Full text link
    [EN] The aim of this paper is to obtain the distribution of tensions in the land excited by currents type ray using different types of electrodes: the goad electrodes and the deep goad electrodes, and as an exceptional case an electrode type drags was used. In this work, the program ANSYS® that is based on the finite elements method (FEM) was used. After the simulation of the distribution of tensions, different parameters were obtained, such as the tensions of step (Vp) and of contact (Vc) which determine the security of the installation of put in the earth (PE) protection.Bueno Barrachina, JM.; Cañas Peñuelas, CS.; Catalán Izquierdo, S.; Quijano Lopez, A. (2008). Modelization of earth electrode excited by atmospheric discharges based on FEM. Renewable Energy and Power Quality Journal. 1(6):727-732. http://hdl.handle.net/10251/92551S7277321

    Joining together theory and practice in the classroom for electrical engineering undergraduates: The large-scale portable laboratory

    Full text link
    [EN] Teaching electrical engineering requires a combination of theoretical and practical lessons to acquire knowledge and develop skills. However, in general, laboratory sessions are conducted separately from theoretical lessons for practical reasons. We shall describe a proposal to bridge the gap between theoretical explanation or exercises and practical application in a laboratory: the large-scale portable laboratory. This temporary laboratory can be set up and then collected again in a conventional classroom in just a few minutes. By using safe voltages and currents it allows us to illustrate and mmediately apply theoretical concepts or to discover some phenomena, which can then be explained theoretically. It is a tool to connect experimental observations and theoretical explanations during student learning. This laboratory has some physical limitations and does not replace practical sessions in an electrical engineering laboratory. A full session with this laboratory will be described and the results obtained will subsequently be presented. As a result, student involvement dramatically increases. It provided good results in learning and helped the electric laboratory sessions. Some difficulties such as preparation time and time spent during the session are also discussed.Llovera Segovia, P.; Fuster Roig, VL.; Quijano-Lopez, A.; Vilaplana Cerda, RI. (2019). Joining together theory and practice in the classroom for electrical engineering undergraduates: The large-scale portable laboratory. International Journal of Electrical Engineering Education. 1-11. https://doi.org/10.1177/0020720919833030S11

    Classification of customers based on temporal load profile patterns

    Full text link
    [EN] The deployment of Advanced Metering Infrastructure (AMI) is providing to utilities large amounts of energy consumption data from their customers, in form of daily load profiles with energy consumed per hour or a smaller period. These data can yield valuable results when analyzed, in order to extract useful knowledge about the typical patterns of consumption of energy from the customers. The proper mechanisms and tools have to be developed and implemented for this objective. Big Data and Big Data Analytics systems will contribute to analyze this information and help to extract knowledge from the data, summarized in form of patterns or other mining knowledge, that will aid experts in decision support. In the present work a classification of customers based on their temporal load profiles is proposed. This classification procedure could be implemented in the current Big Data Analytics software systems, providing an added value to their statistical analysis options. Previous works in the literature present algorithms that allow to classify load profiles from customers by processing batch datasets and obtaining static patterns of load profiles. The proposed technique allows to analyze patterns not only in shape but also in their evolution or trend of energy consumption at each hour of the day through time. Specific quantitative indicators that characterize the patterns (and the consumers associated to them) are described and tested for this purpose.Benítez Sánchez, IJ.; Quijano Lopez, A.; Delgado Espinos, I.; Diez Ruano, JL. (2017). Classification of customers based on temporal load profile patterns. Cigre Science & engineering. (7):143-148. http://hdl.handle.net/10251/104883S143148
    corecore