1,013 research outputs found
Geometric Thermodynamics of Schwarzschild-AdS black hole with a Cosmological Constant as State Variable
The thermodynamics of the Schwarzschild-AdS black hole is reformulated within
the context of the recently developed formalism of geometrothermodynamics
(GTD). Different choices of the metric in the equilibrium states manifold are
used in order to reproduce the Hawking-Page phase transition as a divergence of
the thermodynamical curvature scalar. We show that the enthalpy and total
energy representations of GTD does not reproduce the transition while the
entropy rep- resentation gives the expected behavior.Comment: 14 page
Multiple Loop Self-Triggered Model Predictive Control for Network Scheduling and Control
We present an algorithm for controlling and scheduling multiple linear
time-invariant processes on a shared bandwidth limited communication network
using adaptive sampling intervals. The controller is centralized and computes
at every sampling instant not only the new control command for a process, but
also decides the time interval to wait until taking the next sample. The
approach relies on model predictive control ideas, where the cost function
penalizes the state and control effort as well as the time interval until the
next sample is taken. The latter is introduced in order to generate an adaptive
sampling scheme for the overall system such that the sampling time increases as
the norm of the system state goes to zero. The paper presents a method for
synthesizing such a predictive controller and gives explicit sufficient
conditions for when it is stabilizing. Further explicit conditions are given
which guarantee conflict free transmissions on the network. It is shown that
the optimization problem may be solved off-line and that the controller can be
implemented as a lookup table of state feedback gains. Simulation studies which
compare the proposed algorithm to periodic sampling illustrate potential
performance gains.Comment: Accepted for publication in IEEE Transactions on Control Systems
Technolog
Geometrothermodynamics
We present the fundamentals of geometrothermodynamics, an approach to study
the properties of thermodynamic systems in terms of differential geometric
concepts. It is based, on the one hand, upon the well-known contact structure
of the thermodynamic phase space and, on the other hand, on the metric
structure of the space of thermodynamic equilibrium states. In order to make
these two structures compatible we introduce a Legendre invariant set of
metrics in the phase space, and demand that their pullback generates metrics on
the space of equilibrium states. We show that Weinhold's metric, which was
introduced {\it ad hoc}, is not contained within this invariant set. We propose
alternative metrics which allow us to redefine the concept of thermodynamic
length in an invariant manner and to study phase transitions in terms of
curvature singularities.Comment: Revised version, to be published in Jour. Math. Phy
Recommended from our members
Optimization of the neutron yield in fusion plasmas produced by Coulomb explosions of deuterium clusters irradiated by a petawatt laser
The kinetic energy of hot (multi-keV) ions from the laser-driven Coulomb explosion of deuterium clusters and the resulting fusion yield in plasmas formed from these exploding clusters has been investigated under a variety of conditions using the Texas Petawatt laser. An optimum laser intensity was found for producing neutrons in these cluster fusion plasmas with corresponding average ion energies of 14 keV. The substantial volume (1-10 mm(3)) of the laser-cluster interaction produced by the petawatt peak power laser pulse led to a fusion yield of 1.6x10(7) neutrons in a single shot with a 120 J, 170 fs laser pulse. Possible effects of prepulses are discussed. DOI: 10.1103/PhysRevE.87.023106Glenn Focht Memorial FellowshipNNSA DE-FC52-08NA28512DOE Office of Basic Energy SciencesPhysic
Extending the generalized Chaplygin gas model by using geometrothermodynamics
We use the formalism of geometrothermodynamics (GTD) to derive fundamental
thermodynamic equations that are used to construct general relativistic
cosmological models. In particular, we show that the simplest possible
fundamental equation, which corresponds in GTD to a system with no internal
thermodynamic interaction, describes the different fluids of the standard model
of cosmology. In addition, a particular fundamental equation with internal
thermodynamic interaction is shown to generate a new cosmological model that
correctly describes the dark sector of the Universe and contains as a special
case the generalized Chaplygin gas model.Comment: 18 pages, 7 figures. Section added: Basics aspects of
geometrothermodynamic
Circular motion of neutral test particles in Reissner-Nordstr\"om spacetime
We investigate the motion of neutral test particles in the gravitational
field of a mass with charge described by the Reissner-Nordstr\"om (RN)
spacetime. We focus on the study of circular stable and unstable orbits around
configurations describing either black holes or naked singularities. We show
that at the classical radius, defined as , there exist orbits with zero
angular momentum due to the presence of repulsive gravity. The analysis of the
stability of circular orbits indicates that black holes are characterized by a
continuous region of stability. In the case of naked singularities, the region
of stability can split into two non-connected regions inside which test
particles move along stable circular orbits.Comment: 23 pages, 22 figures. To be published Phys. Rev.
Thermodynamic Geometry Of Charged Rotating BTZ Black Holes
We study the thermodynamics and the thermodynamic geometries of charged
rotating BTZ (CR-BTZ) black holes in (2+1)-gravity. We investigate the
thermodynamics of these systems within the context of the Weinhold and
Ruppeiner thermodynamic geometries and the recently developed formalism of
geometrothermodynamics (GTD). Considering the behavior of the heat capacity and
the Hawking temperature, we show that Weinhold and Ruppeiner geometries cannot
describe completely the thermodynamics of these black holes and of their
limiting case of vanishing electric charge. In contrast, the Legendre
invariance imposed on the metric in GTD allows one to describe the CR-BTZ black
holes and their limiting cases in a consistent and invariant manner
Recommended from our members
Development Of Third Harmonic Generation As A Short Pulse Probe Of Shock Heated Material
We are studying high-pressure laser produced shock waves in silicon (100). To examine the material dynamics, we are performing pump-probe style experiments utilizing 600 ps and 40 fs laser pulses from a Ti:sapphire laser. Two-dimensional interferometry reveals information about the shock breakout, while third harmonic light generated at the rear surface is used to infer the crystalline state of the material as a function of time. Sustained third harmonic generation (THG) during a similar to 100 kbar shock breakout indicate that the rear surface remains crystalline for at least 3 ns. However, a decrease in THG during a similar to 300 kbar shock breakout suggests a different behavior, which could include a change in crystalline structure.Mechanical Engineerin
Time and "angular" dependent backgrounds from stationary axisymmetric solutions
Backgrounds depending on time and on "angular" variable, namely polarized and
unpolarized Gowdy models, are generated as the sector inside
the horizons of the manifold corresponding to axisymmetric solutions. As is
known, an analytical continuation of ordinary -branes, -branes allows
one to find -brane solutions. Simple models have been constructed by means
of analytic continuation of the Schwarzchild and the Kerr metrics. The
possibility of studying the -Gowdy models obtained here is outlined with an
eye toward seeing if they could represent some kind of generalized -branes
depending not only on time but also on an ``angular'' variable.Comment: 24 pages, 5 figures, corrected typos, references adde
- …