12 research outputs found

    Long-term behavior of deep concrete lined tunnels : finite elment model

    No full text
    O dimensionamento e verificação estrutural de túneis envolve diversos parâmetros geotécnicos e o controle de diversas variáveis estruturais como, por exemplo, a convergência (fechamento) da cavidade, a pressão atuante no revestimento e o nível de descompressão do maciço. O campo de deformações e tensões que se desenvolve no entorno do túnel dependerá da profundidade, da geometria da seção, da distribuição de cargas na superfície, da heterogeneidade e distribuição das camadas de solo, do comportamento mecânico conjunto do maciço e do revestimento, bem como do processo de escavação e colocação do revestimento. Esse trabalho trata de simulações numéricas do comportamento a longo prazo em túneis revestidos com concreto, incluindo túneis gêmeos. Portanto, o maciço foi considerado com uma lei de comportamento viscoplástica, com superfície de cedência de von-Mises acoplada no modelo reológico de Perzyna, e para o concreto, foi considerada uma lei viscoelástica através das formulações de fluência e retração constantes no CEB-MC90 adaptadas à teoria da solidificação de Bazant & Prasannan (1989ª, 1989b). Para esse estudo foram construídos scripts de modelos bidimensionais axissimétricos e tridimensionais no software ANSYS. A implementação do modelo do concreto é feita através do recurso de customização do material que o ANSYS disponibiliza: a subrotina UserMat. O processo de escavação e colocação do revestimento é simulado através do recurso de ativação e desativação dos elementos finitos considerando uma velocidade de avanço constante. Além da validação do modelo do concreto, é feita a validação dos modelos dos túneis em elasticidade, plasticidade e viscoplasticidade sem e com revestimento elástico através de expressões analíticas e o software GEOMEC91 desenvolvido por Bernaud (1991), demonstrando excelente conformidade. Nos exemplos testados, a influência da viscoelasticidade do concreto pode aumentar as deformações em até 40% em comparação com o revestimento elástico, e a proximidade dos túneis longitudinais em cerca de 15% (fazendo com que o campo de deformações deixe de ser puramente radial). Também é estudada a influência de galerias transversais.The structural desing and verification of tunnels involves several geotechnical parameters and the control of several structural variables, such as the convergence (closure) of the cavity, the pressure over the linning and the level of decompression of the rockmass. The field of deformations and stresses developed around the tunnel will depend of the depth, section geometry, surface load distribution, mechanical behavior of the rockmass and linning, as well as the process of excavation and placement of the linning. This dissertation deals with numerical simulations of long-term behavior in concrete lined tunnels, including twin tunnels. Therefore, for the rockmass it was considered a viscoplastic behavior law, with von-Mises yield surface coupled in the rheology model of Perzyna, and for concrete, it was considered a viscoelastic law through creep and shrinkage formulations in the CEB-MC90 adapted to the solidification theory of Bazant & Prasannan (1989a, 1989b). For this study, scripts were constructed for two-dimensional axissimetric and three-dimensional models in the ANSYS software. The implementation of concrete model is done through the material customization capabilities that ANSYS makes available: the UserMat subroutine. The process of excavation and placement of the linning is simulated through the activation/deactivation of finite elements considering a constant speed of advance of tunnel. The models are validated in elasticity, plasticity and viscoplasticity without and with elastic linning through analytical expressions and the software GEOMEC91 developed by Bernaud (1991), demonstrating excellent conformity. In the examples tested, the influence of viscoelastictity of the concrete can increase the deformations by up to 40% compared to the elastic linning, and the proximity of the longitudinal tunnels by about 15% (making the strain field no longer purely radial). The influence of transverse galleries is also studied

    Long-term behavior of deep concrete lined tunnels : finite elment model

    No full text
    O dimensionamento e verificação estrutural de túneis envolve diversos parâmetros geotécnicos e o controle de diversas variáveis estruturais como, por exemplo, a convergência (fechamento) da cavidade, a pressão atuante no revestimento e o nível de descompressão do maciço. O campo de deformações e tensões que se desenvolve no entorno do túnel dependerá da profundidade, da geometria da seção, da distribuição de cargas na superfície, da heterogeneidade e distribuição das camadas de solo, do comportamento mecânico conjunto do maciço e do revestimento, bem como do processo de escavação e colocação do revestimento. Esse trabalho trata de simulações numéricas do comportamento a longo prazo em túneis revestidos com concreto, incluindo túneis gêmeos. Portanto, o maciço foi considerado com uma lei de comportamento viscoplástica, com superfície de cedência de von-Mises acoplada no modelo reológico de Perzyna, e para o concreto, foi considerada uma lei viscoelástica através das formulações de fluência e retração constantes no CEB-MC90 adaptadas à teoria da solidificação de Bazant & Prasannan (1989ª, 1989b). Para esse estudo foram construídos scripts de modelos bidimensionais axissimétricos e tridimensionais no software ANSYS. A implementação do modelo do concreto é feita através do recurso de customização do material que o ANSYS disponibiliza: a subrotina UserMat. O processo de escavação e colocação do revestimento é simulado através do recurso de ativação e desativação dos elementos finitos considerando uma velocidade de avanço constante. Além da validação do modelo do concreto, é feita a validação dos modelos dos túneis em elasticidade, plasticidade e viscoplasticidade sem e com revestimento elástico através de expressões analíticas e o software GEOMEC91 desenvolvido por Bernaud (1991), demonstrando excelente conformidade. Nos exemplos testados, a influência da viscoelasticidade do concreto pode aumentar as deformações em até 40% em comparação com o revestimento elástico, e a proximidade dos túneis longitudinais em cerca de 15% (fazendo com que o campo de deformações deixe de ser puramente radial). Também é estudada a influência de galerias transversais.The structural desing and verification of tunnels involves several geotechnical parameters and the control of several structural variables, such as the convergence (closure) of the cavity, the pressure over the linning and the level of decompression of the rockmass. The field of deformations and stresses developed around the tunnel will depend of the depth, section geometry, surface load distribution, mechanical behavior of the rockmass and linning, as well as the process of excavation and placement of the linning. This dissertation deals with numerical simulations of long-term behavior in concrete lined tunnels, including twin tunnels. Therefore, for the rockmass it was considered a viscoplastic behavior law, with von-Mises yield surface coupled in the rheology model of Perzyna, and for concrete, it was considered a viscoelastic law through creep and shrinkage formulations in the CEB-MC90 adapted to the solidification theory of Bazant & Prasannan (1989a, 1989b). For this study, scripts were constructed for two-dimensional axissimetric and three-dimensional models in the ANSYS software. The implementation of concrete model is done through the material customization capabilities that ANSYS makes available: the UserMat subroutine. The process of excavation and placement of the linning is simulated through the activation/deactivation of finite elements considering a constant speed of advance of tunnel. The models are validated in elasticity, plasticity and viscoplasticity without and with elastic linning through analytical expressions and the software GEOMEC91 developed by Bernaud (1991), demonstrating excellent conformity. In the examples tested, the influence of viscoelastictity of the concrete can increase the deformations by up to 40% compared to the elastic linning, and the proximity of the longitudinal tunnels by about 15% (making the strain field no longer purely radial). The influence of transverse galleries is also studied

    Programa computacional para automatizar o dimensionamento e detalhamento de escadas de concreto armado em edifícios

    Get PDF
    Este trabalho teve como intuito a elaboração de um programa – escrito na linguagem Visual Basic – para dimensionar e detalhar lances de escadas de concreto armado. Para tanto, dentro desse trabalho, em um primeiro momento, encontra-se explicitado o rumo necessário para tal objetivo. Inicialmente, foram abordados tópicos referentes à concepção arquitetônica de escadas em geral, sendo apresentado especificações que constam em códigos e normas brasileiras sobre largura do lance da escada, geometria dos degraus e patamares, corrimãos e guarda-corpos. Posteriormente, são abordados tópicos referentes ao dimensionamento estrutural de lances que possam ser modelados como uma laje armada em uma direção. São apresentados temas referentes à composição de cargas, ao modelo estrutural, à determinação da área de aço das armaduras usadas no lance, às características das armaduras, às verificações de ancoragem e de dispensa de armaduras de cisalhamento. Como última abordagem teórica são apresentadas as recomendações de detalhamento de lances de escada. Após expor o referencial teórico, é apresentado o programa computacional para automatizar o dimensionamento e detalhamento de escadas de concreto armado em edifícios. Para tanto, inicialmente, são apresentadas as janelas do programa, suas correspondentes funções e configurações. Logo após, tem-se a apresentação dos comentários referentes ao teste do programa e, por fim, têm-se as considerações finais que apresentam o fechamento do trabalho tendo em vista o objetivo alcançado pelo programa

    Computational analysis of deformations in deep tunnels considering plasticity-viscoplastcity cupling

    No full text
    O projeto e a verificação estrutural de túneis profundos envolvem diversos parâmetros geotécnicos bem como a necessidade de prever a convergência (fechamento) e a estabilidade da seção do túnel. Contudo, o campo de deformações e tensões ao redor da cavidade depende de diversos fatores inter-relacionados, tais como, a profundidade, a geometria da seção, a anisotropia das tensões in situ, a heterogeneidade do maciço, o processo construtivo e a interação com o revestimento. Somado a essa complexidade a reologia do maciço é um fator crucial. Um aspecto comum na problemática de túneis é o comportamento diferido ao longo do tempo. O objetivo principal dessa tese foi formular, programar e validar, no contexto dos elementos finitos em estado plano de deformações, axissimetria e tridimensional, um modelo constitutivo acoplado capaz de simular as deformações instantâneas (elásticas ou elastoplásticas) juntamente com o comportamento diferido (viscoso). Para a parcela instantânea foi adotado um modelo elastoplástico de Drucker-Prager com lei de endurecimento/amolecimento governada pela variável interna coesiva. No comportamento diferido foi utilizado um modelo viscoplástico conforme a teoria da sobretensão de Perzyna com a mesma superfície de elastoplasticidade, porém perfeita. Portanto, é apresentado um esquema de integração numérica para lidar, de forma geral, com o comportamento acoplado conjuntamente com suas variáveis internas. O modelo foi implementado no software ANSYS 2021R1 utilizando o seu recurso programável USERMAT. O processo de escavação e colocação do revestimento é simulado através da ativação e desativação dos elementos finitos. Verificações com soluções analíticas e numéricas demonstraram que modelo desenvolvido funcionou adequadamente. Análises paramétricas demonstraram diferenças da ordem de 5% a 20% na comparação desse modelo acoplado com o modelo apenas viscoplástico. Também foi estudado a influência desse modelo em seções transversais elípticas demonstrando a sua importância quando ocorrem plastificações no entorno do maciço.The design and structural verification of deep tunnels involve several geotechnical parameters as well as the need to predict the convergence (closure) and stability of the tunnel cross-section. However, the field of deformations and stresses around the cavity depends on several interrelated factors, such as depth, cross-section geometry, anisotropy of stresses in situ, rockmass heterogeneity, construction process, and lining interaction. Added to this complexity, the rheology of the rockmassif is a crucial factor. A common aspect in the problem of tunnels is the long-term behavior. The main objective of this thesis was to formulate, program and validate, in the context of the finite elements method in-plane, axisymmetry, and three-dimensional state strain, a coupled constitutive model capable of simulating instantaneous strains (elastic or elastoplastic) together with long-term (viscous) behavior. For the instantaneous behavior, an elastoplastic Drucker-Prager model with hardening/softening law governed by the cohesive internal variable was adopted. In the time-dependent behavior, a viscoplastic model was used according to the Perzyna overstress theory with the same elastoplasticity surface, however perfect. Therefore, a numerical integration scheme is presented to deal, in general, with the behavior coupled together with its internal variables. The model was implemented in software ANSYS 2021R1 using its programmable feature USERMAT. The process of excavating and placing the lining is simulated by activating and deactivating the finite elements. Verifications with analytical and numerical solutions showed that the developed model worked properly. Parametric analyzes showed differences in the order of 5% to 20% when comparing this coupled model with the viscoplastic-only model. The influence of this model on an elliptical cross-section was also studied, demonstrating its importance when plasticization occurs in the rockmass

    Analytical solution of deep tunnels in a strain-hardening elasto-plastic rock mass

    Get PDF
    Excavation of tunnels produces a redistribuition of stresses and induces deformations in the rock mass around the tunnel’s cross section. In the case of elasto-plastic behavior of rock mass, plastic zones may appear. It is important to quantify the influence of this zone on the overall response of the tunnel. In this paper, we deduce a fully analytical solution in terms of displacements and stresses around a circular deep tunnel. The aim here is not to replace a 3D numerical calculation. This kind of analytical calculation are only useful to have a good understanding of the tunnel behavior in the preliminary phases of the project. For example, to perform parametric studies useful to choosing good parameters to introduce in a 3D numerical calculation. A homogeneous and isotropic rock mass is considered. For elasto-plastic behavior, the Tresca’s constitutive model with associate flow rule and Mohr-Coulomb’s constitutive model with non-associate flow rule are considered. For both, the idealized stress-strain curve presents a linear istropic hardening law. A geostatichydrostatic state of initial stresses and infinitesimal strains is assumed. The analytical solutions are compared with the FEM solutions demonstrating excellent agreement

    Numerical analysis of deep tunnels in viscoplastic rock mass considering the creep and shrinkage of the concrete lining

    No full text
    This paper aims to show, through numerical parameter analysis on a finite-element method with axisymmetry hypothesis, the long-term effect involving the creep and shrinkage of the concrete lining in deep tunnel problems. The excavation process is simulated by the deactivation and activation method. A viscoplastic constitutive model for the rock mass and an elastic and viscoelastic constitutive model for the lining are used in the software ANSYS. Perzyna’s viscoplastic constitutive model with an associated flow rule with von Mises yield surface is considered. The viscoelastic model is implemented in ANSYS using the customization feature. The shrinkage is given by the CEB-FIP MC90 formulation and the creep part is modeled through a Generalized Kelvin chain, according to the solidification theory of Bazant and Prasannan, whose parameters are adjusted with the creep function of the CEB-FIP MC90. Compared with an elastic lining, the viscoelastic line showed a difference (in average terms), in the equilibrium convergence at the end of tunnel construction between 6% and 37%. This value increases to 8% and 72% in the long-term convergence
    corecore