6 research outputs found

    Gas density influences the transition from capillary collapse to surface seal in microfluidic jet impacts on deep pools

    Full text link
    Studies of liquid jet impacts onto a deep liquid pool are of great significance for a multitude of engineering and environmental applications. During jet impact, the free surface of the pool deforms and a cavity is generated. Simultaneously, the free surface of the cavity extends radially outward and forms a rim. Eventually the cavity collapses by means of gas inertia and surface tension. In this work we study numerically such cavity collapse, under different impact velocities and ambient gas density conditions. An axisymmetric numerical model, based on the volume of fluid method is constructed in Basilisk C. This model is validated by qualitative and quantitative comparison with theory and experiments, in a parameter range that has not been previously explored. Our results show two distinct regimes in the cavity collapse mechanism. By considering forces pulling along the interface, we derive scaling arguments for the time of closure and maximum radius of the cavity, based on the Weber number. For jets with uniform constant velocity from tip to tail and We≤150We \leq 150 the cavity closure is capillary dominated and happens below the surface (deep seal). In contrast, for We≥200We \geq 200 the cavity closure happens above the surface (surface seal) and is dominated by the gas entrainment and the pressure gradient that it causes. Our results provide information for understanding pollutant transport during droplet impacts on large bodies of water, and other engineering application, like additive manufacturing, lithography and needle-free injections

    Cavity dynamics after the injection of a microfluidic jet onto capillary bridges

    Get PDF
    The ballistics of solid and liquid objects (projectiles) impacting on liquids and soft solids (targets) generally results in the creation and expansion of an air cavity inside the impacted object. The dynamics of cavity expansion and collapse depends on the projectile inertia as well as on the target properties. In this paper we study the impact of microfluidic jets generated by thermocavitation processes on a capillary bridge between two parallel planar walls. Different capillary bridge types were studied, Newtonian liquids, viscoelastic liquids and agarose gels. Thus, we compare the cavity formation and collapse between a wide range of material properties. Moreover, we model the critical impact velocity of a jet traversing a capillary bridge type. For agarose gels with a storage modulus of 176 Pa, the critical velocity is well predicted by the model used for liquids. However, the predicted critical velocity for liquids deviates for agarose gels with a storage modulus of 536 Pa and 3961 Pa. Additionally, we show different types of cavity collapse, depending on the Weber number and the capillary bridge properties. We conclude that the type of collapse determines the number and size of entrained bubbles. Furthermore, we study the effects of wettability on the adhesion forces and contact line dissipation. We also conclude that upon cavity collapse, for hydrophobic walls a Worthington jet is energetically favourable. In contrast, for hydrophilic walls, the contact line dissipation is in the same order of magnitude of the energy of the impacted jet, suppressing the Worthington jet formation. Our results provide strategies for preventing bubble entrapment and give an estimation of the cavity dynamics, of relevance for, among others, needle-free injection applications

    Impact of a microfluidic jet on a pendant droplet

    Get PDF
    High speed microfluidic jets can be generated by a thermocavitation process: from the evaporation of the liquid inside a microfluidic channel, a rapidly expanding bubble is formed and generates a jet through a flow focusing effect. Here, we study the impact and traversing of such jets on a pendant liquid droplet. Upon impact, an expanding cavity is created, and, above a critical impact velocity, the jet traverses the entire droplet. We predict the critical traversing velocity (i) from a simple energy balance and (ii) by comparing the Young–Laplace and dynamic pressures in the cavity that is created during the impact. We contrast the model predictions against experiments, in which we vary the liquid properties of the pendant droplet and find good agreement. In addition, we assess how surfactants and viscoelastic effects influence the critical impact velocity. Our results increase the knowledge of the jet interaction with materials of well-known physical properties

    Cavitation-induced microjets tuned by channels with alternating wettability patterns

    Get PDF
    A laser pulse focused near the closed end of a glass capillary partially filled with water creates a vapor bubble and an associated pressure wave. The pressure wave travels through the liquid toward the meniscus where it is reflected, creating a fast, focused microjet. In this study, we selectively coat the hydrophilic glass capillaries with hydrophobic strips along the capillary. The result after filling the capillary is a static meniscus which has a curvature markedly different than an unmodified capillary. This tilting asymmetry in the static meniscus alters the trajectory of the ensuing jets. The hydrophobic strips also influence the advancing contact line and receding contact line as the vapor bubble expands and collapses. We present thirteen different permutations of this system which includes three geometries and four coating schemes. The combination of geometry and coatings influences the jet breakup, the resulting drop size distribution, the trajectory of the jet tip, and the consistency of jet characteristics across trials. The inclusion of hydrophobic strips promotes jetting in line with the channel axis, with the most effective arrangement dependent on channel size
    corecore