833 research outputs found
Cortisol/Cortisone Levels and Quality of Life in Individuals with Pulmonary Arterial Hypertension (PAH).
Individuals with pulmonary arterial hypertension experience debilitating symptoms and psychological distress which may influence their cortisol regulation. We describe associations between diurnal salivary cortisol/cortisone levels and quality of life in adults with pulmonary arterial hypertension. Findings suggest potential clinical utility of cortisol/cortisone assessment as applied to a pulmonary arterial hypertension population
Sodium-Glucose Co-transporter 2 Inhibitors in Heart Failure: Recent Data and Implications for Practice.
Heart failure is a shared chronic phase of many cardiac diseases and its prevalence is on the rise globally. Previous large-scale cardiovascular outcomes trials of sodium.glucose co-transporter 2 (SGLT2) inhibitors in patients with type 2 diabetes (T2D) have suggested that these agents may help to prevent primary and secondary hospitalisation due to heart failure and cardiovascular death in these patients. Data from the Study to Evaluate the Effect of Dapagliflozin on the Incidence of Worsening Heart Failure or Cardiovascular Death in Patients With Chronic Heart Failure (DAPA-HF) and Empagliflozin Outcome Trial in Patients With Chronic Heart Failure With Reduced Ejection Fraction (EMPEROR-Reduced) have demonstrated the positive clinical impact of SGLT2 inhibition in patients with heart failure with reduced ejection fraction both with and without T2D. These data have led to the approval of dapagliflozin for the treatment of patients with heart failure with reduced ejection fraction, irrespective of T2D status. This article reviews the latest data reported from the DAPA-HF and EMPEROR-Reduced trials and their clinical implications for the treatment of patients with heart failure
Deformation of the Fermi surface in the extended Hubbard model
The deformation of the Fermi surface induced by Coulomb interactions is
investigated in the t-t'-Hubbard model. The interplay of the local U and
extended V interactions is analyzed. It is found that exchange interactions V
enhance small anisotropies producing deformations of the Fermi surface which
break the point group symmetry of the square lattice at the Van Hove filling.
This Pomeranchuck instability competes with ferromagnetism and is suppressed at
a critical value of U(V). The interaction V renormalizes the t' parameter to
smaller values what favours nesting. It also induces changes on the topology of
the Fermi surface which can go from hole to electron-like what may explain
recent ARPES experiments.Comment: 5 pages, 4 ps figure
Novel miR-29b target regulation patterns are revealed in two different cell lines
MicroRNAs (miRNAs) are a class of small non-coding RNAs that regulate gene or protein expression by targeting mRNAs and triggering either translational repression or mRNA degradation. Distinct expression levels of miRNAs, including miR-29b, have been detected in various biological fluids and tissues from a large variety of disease models. However, how miRNAs “react” and function in different cellular environments is still largely unknown. In this study, the regulation patterns of miR-29b between human and mouse cell lines were compared for the first time. CRISPR/Cas9 gene editing was used to stably knockdown miR-29b in human cancer HeLa cells and mouse fibroblast NIH/3T3 cells with minimum off-targets. Genome editing revealed mir-29b-1, other than mir-29b-2, to be the main source of generating mature miR-29b. The editing of miR-29b decreased expression levels of its family members miR-29a/c via changing the tertiary structures of surrounding nucleotides. Comparing transcriptome profiles of human and mouse cell lines, miR-29b displayed common regulation pathways involving distinct downstream targets in macromolecular complex assembly, cell cycle regulation, and Wnt and PI3K-Akt signalling pathways; miR-29b also demonstrated specific functions reflecting cell characteristics, including fibrosis and neuronal regulations in NIH/3T3 cells and tumorigenesis and cellular senescence in HeLa cells
Highly Conducting pi-Conjugated Molecular Junctions Covalently Bonded to Gold Electrodes
We measure electronic conductance through single conjugated molecules bonded
to Au metal electrodes with direct Au-C covalent bonds using the scanning
tunneling microscope based break-junction technique. We start with molecules
terminated with trimethyltin end groups that cleave off in situ resulting in
formation of a direct covalent sigma bond between the carbon backbone and the
gold metal electrodes. The molecular carbon backbone used in this study consist
of a conjugated pi-system that has one terminal methylene group on each end,
which bonds to the electrodes, achieving large electronic coupling of the
electrodes to the pi-system. The junctions formed with the prototypical example
of 1,4-dimethylenebenzene show a conductance approaching one conductance
quantum (G0 = 2e2/h). Junctions formed with methylene terminated oligophenyls
with two to four phenyl units show a hundred-fold increase in conductance
compared with junctions formed with amine-linked oligophenyls. The conduction
mechanism for these longer oligophenyls is tunneling as they exhibit an
exponential dependence of conductance with oligomer length. In addition,
density functional theory based calculations for the Au-xylylene-Au junction
show near-resonant transmission with a cross-over to tunneling for the longer
oligomers.Comment: Accepted to the Journal of the American Chemical Society as a
Communication
iSRAP - A one-touch research tool for rapid profiling of small RNA-seq data
Small non-coding RNAs have been significantly recognized as the key modulators in many biological processes, and are emerging as promising biomarkers for several diseases. These RNA species are transcribed in cells and can be packaged in extracellular vesicles, which are small vesicles released from many biotypes, and are involved in intercellular communication. Currently, the advent of next-generation sequencing (NGS) technology for high-throughput profiling has further advanced the biological insights of non-coding RNA on a genome-wide scale and has become the preferred approach for the discovery and quantification of noncoding RNA species. Despite the routine practice of NGS, the processing of large data sets poses difficulty for analysis before conducting downstream experiments. Often, the current analysis tools are designed for specific RNA species, such as microRNA, and are limited in flexibility for modifying parameters for optimization. An analysis tool that allows for maximum control of different software is essential for drawing concrete conclusions for differentially expressed transcripts. Here, we developed a one-touch integrated small RNA analysis pipeline (iSRAP) research tool that is composed of widely used tools for rapid profiling of small RNAs. The performance test of iSRAP using publicly and in-house available data sets shows its ability of comprehensive profiling of small RNAs of various classes, and analysis of differentially expressed small RNAs. iSRAP offers comprehensive analysis of small RNA sequencing data that leverage informed decisions on the downstream analyses of small RNA studies, including extracellular vesicles such as exosomes
Diamorphine pharmacokinetics and conversion factor estimates for intranasal diamorphine in paediatric breakthrough pain:systematic review
BACKGROUND: Intranasal diamorphine is a potential treatment for breakthrough pain but few paediatric data are available to assist dose estimation. AIM: To determine an intranasal diamorphine dose in children through an understanding of pharmacokinetics. DESIGN: A systematic review of the literature was undertaken to seek diamorphine pharmacokinetic parameters in neonates, children and adults. Parenteral and enteral diamorphine bioavailability were reviewed with respect to formation of the major metabolite, morphine. Clinical data quantifying equianalgesic effects of diamorphine and morphine were reviewed. REVIEW SOURCES: PubMed (1960-2020); EMBASE (1980-2020); IPA (1973-2020) and original human research studies that reported diacetylmorphine and metabolite after any dose or route of administration. RESULTS: The systematic review identified 19 studies: 16 in adults and 1 in children and 2 neonatal reports. Details of study participants were extracted. Age ranged from premature neonates to 67 years and weight 1.4-88 kg. Intranasal diamorphine bioavailability was predicted as 50%. The equianalgesic intravenous conversion ratio of morphine:diamorphine was 2:1. There was heterogeneity between pharmacokinetic parameter estimates attributed to routes of administration, lack of size standardisation, methodology and pharmacokinetic analysis. Estimates of the pharmacokinetic parameters clearance and volume of distribution were reduced in neonates. There were insufficient paediatric data to characterise clearance or volume maturation of either diamorphine or its metabolites. CONCLUSIONS: We estimate equianalgesic ratios of intravenous morphine:diamorphine 2:1, intravenous morphine:intranasal diamorphine 1:1 and oral morphine:intranasal diamorphine of 1:3. These ratios are based on adult literature, but are reasonable for deciding on an initial dose of 0.1 mg/kg in children 4-13 years
Correlation of interfacial bonding mechanism and equilibrium conductance of molecular junctions
We report theoretical investigations on the role of interfacial bonding
mechanism and its resulting structures to quantum transport in molecular wires.
Two bonding mechanisms for the Au-S bond in an
Au(111)/1,4-benzenedithiol(BDT)/Au(111) junction were identified by ab initio
calculation, confirmed by a recent experiment, which, we showed, critically
control charge conduction. It was found, for Au/ BDT/Au junctions, the hydrogen
atom, bound by a dative bond to the Sulfur, is energetically non-dissociative
after the interface formation. The calculated conductance and junction
breakdown forces of H-non-dissociative Au/BDT/Au devices are consistent with
the experimental values, while the H-dissociated devices, with the interface
governed by typical covalent bonding, give conductance more than an order of
magnitude larger. By examining the scattering states that traverse the
junctions, we have revealed that mechanical and electric properties of a
junction have strong correlation with the bonding configuration. This work
clearly demonstrates that the interfacial details, rather than previously
believed many-body effects, is of vital importance for correctly predicting
equilibrium conductance of molecular junctions; and manifests that the
interfacial contact must be carefully understood for investigating quantum
transport properties of molecular nanoelectronics.Comment: 18 pages, 6 figures, 2 tables, to be appeared in Frontiers of Physics
9(6), 780 (2014
The landscape of potential health benefits of carotenoids as natural supportive therapeutics in protecting against Coronavirus infection
The Coronavirus Disease-2019 (COVID-19) pandemic urges researching possibilities for prevention and management of the effects of the virus. Carotenoids are natural phytochemicals of anti-oxidant, anti-inflammatory and immunomodulatory properties and may exert potential in aiding in combatting the pandemic. This review presents the direct and indirect evidence of the health benefits of carotenoids and derivatives based on in vitro and in vivo studies, human clinical trials and epidemiological studies and proposes possible mechanisms of action via which carotenoids may have the capacity to protect against COVID-19 effects. The current evidence provides a rationale for considering carotenoids as natural supportive nutrients via antioxidant activities, including scavenging lipid-soluble radicals, reducing hypoxia-associated superoxide by activating antioxidant enzymes, or suppressing enzymes that produce reactive oxygen species (ROS). Carotenoids may regulate COVID-19 induced over-production of pro-inflammatory cytokines, chemokines, pro-inflammatory enzymes and adhesion molecules by nuclear factor kappa B (NF-ÎşB), renin-angiotensin-aldosterone system (RAS) and interleukins-6- Janus kinase-signal transducer and activator of transcription (IL-6-JAK/STAT) pathways and suppress the polarization of pro-inflammatory M1 macrophage. Moreover, carotenoids may modulate the peroxisome proliferator-activated receptors Îł by acting as agonists to alleviate COVID-19 symptoms. They also may potentially block the cellular receptor of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), human angiotensin-converting enzyme 2 (ACE2). These activities may reduce the severity of COVID-19 and flu-like diseases. Thus, carotenoid supplementation may aid in combatting the pandemic, as well as seasonal flu. However, further in vitro, in vivo and in particular long-term clinical trials in COVID-19 patients are needed to evaluate this hypothesis
- …