40 research outputs found

    Targeting the hedgehog transcription factors GLI1 and GLI2 restores sensitivity to vemurafenib-resistant human melanoma cells

    Get PDF
    BRAF inhibitor (BRAFi) therapy for melanoma patients harboring the V600E mutation is initially highly effective, but almost all patients relapse within a few months. Understanding the molecular mechanisms underpinning BRAFi-based therapy is therefore an important issue. Here we identified a previously unsuspected mechanism of BRAFi resistance driven by elevated Hedgehog (Hh) pathway activation that is observed in a cohort of melanoma patients after vemurafenib treatment. Specifically, we demonstrate that melanoma cell lines, with acquired in vitro-induced vemurafenib resistance, show increased levels of glioma-associated oncogene homolog 1 and 2 (GLI1/GLI2) compared with naive cells. We also observed these findings in clinical melanoma specimens. Moreover, the increased expression of the transcription factors GLI1/GLI2 was independent of canonical Hh signaling and was instead correlated with the noncanonical Hh pathway, involving TGF beta/SMAD (transforming growth factor-beta/Sma- and Mad-related family) signaling. Knockdown of GLI1 and GLI2 restored sensitivity to vemurafenib-resistant cells, an effect associated with both growth arrest and senescence. Treatment of vemurafenib-resistant cells with the GLI1/GLI2 inhibitor Gant61 led to decreased invasion of the melanoma cells in a three-dimensional skin reconstruct model and was associated with a decrease in metalloproteinase (MMP2/MMP9) expression and microphthalmia transcription factor upregulation. Gant61 monotherapy did not alter the drug sensitivity of naive cells, but could reverse the resistance of melanoma cells chronically treated with vemurafenib. We further noted that alternating dosing schedules of Gant61 and vemurafenib prevented the onset of BRAFi resistance, suggesting that this could be a potential therapeutic strategy for the prevention of therapeutic escape. Our results suggest that targeting the Hh pathway in BRAFi-resistant melanoma may represent a viable therapeutic strategy to restore vemurafenib sensitivity, reducing or even inhibiting the acquired chemoresistance in melanoma patients.Fapesp-grant number 2012/04194-1, 2013/05172-4, 2014/24400-0 and 2015/10821-7, CNPq-grant number 150447/2013-2 and 471512/2013-3 and PRODOC-grant no 3193-32/2010. Work in the lab of KS Smalley was supported by the National Institutes of Health grants R01 CA161107, R21 CA198550, and Skin SPORE grant P50 CA168536info:eu-repo/semantics/publishedVersio

    Physicochemical characteristics of citrus jelly with non cariogenic and functional sweeteners

    Full text link
    In this study the effect of sweeteners with low glycemic index and non-cariogenic characteristics (isomaltulose, oligofructose and tagatose) in jelly prepared with citrus juice has been evaluated considering a citrus jelly formulated with sucrose as reference. The soluble solids, moisture content, pH, water activity, antioxidant capacity, optical and mechanical properties of jelly made using different sweeteners was determined during storage. Besides, mesophilic aerobics and moulds and yeasts was also counted to determine their stability over time. Sensory evaluation of the citrus jelly has also been done. The results showed the antioxidant activity decreased during storage in all formulations. Tagatose increased lightness whereas coordinates a*, b* and chrome of all the jellies prepared using new sweeteners were lower than jellies with sucrose. However, citrus jelly with only oligofructose or tagatose or with the mixture of isomaltulose and tagatose were most closely resembled to the control jelly with respect to mechanical properties. Jelly prepared with the combination of isomaltulose and tagatose in equal proportions obtained the best score in the sensorial analysis.The authors would like to thank the Serigo-Andres family for donating the raw materials, and also the GVA projects GV/2013/029, GV/2014/012 as well as the Universitat Politecnica de Valencia (Spain) for the financial support given to this research study (UPV PAID-06-12 SP20120889).Rubio-Arraez, S.; Capella Hernández, JV.; Castelló Gómez, ML.; Ortolá Ortolá, MD. (2016). Physicochemical characteristics of citrus jelly with non cariogenic and functional sweeteners. Journal of Food Science and Technology. 53(10):3642-3650. https://doi.org/10.1007/s13197-016-2319-4S364236505310Álvarez J, Pastoriza S, Alonso-Olalla R, Delgado-Andrade C, Rufián-Henares JA (2014) Nutritional and physicochemical characteristic of commercial Spanish citrus juices. Food Chem 164:396–405AOAC (2000) Official methods of analysis of AOAC international, 17th edn. Gaithersburg, MDCalzada-León R, Ruiz-Reyes ML, Altamirano-Bustamante N, Padrón-Martínez MM (2013) Features of the noncaloric sweeteners and their use in children. Acta Pediatr Méx 34(3):141–153Chacón-Villalobos A (2006) Current perspectives agribusiness oligofructosaccharides (FOS). Agron Mesoam 17(2):265–286De Oliva-Neto P, Menão PTP (2009) Isomaltulose production from sucrose by protaminobacter rubrum immobilized in calcium alginate. Bioresour Technol 100:252–4256de Queiroz Pane D, Dias CB, Meinhart AD, Ballus CA, Godoy HT (2015) Evaluation of the sweetener content in diet/light/zero foods and drinks by HPLC-DAD. J Food Sci Tech 52(11):6900–6913Edwards WP (2002) The science of goodies. Acribia S.A, SpainFood and Drug Administration (FDA) (2005) GRAS Notification Isomaltulose (PALATINOSE). http://www.fda.gov/ucm/groups/fdagov-public/@fdagovfoodsgen/documents/document/ucm268989.pdf . Accessed 12 July 2015Food and Drug Administration (FDA) (2010) GRAS Notification Tagatose. GRN No.352. http://www.fda.gov/ucm/groups/fdagov-public/@fdagov-foods-gen/documents/document/ucm269560.pdf . Accessed 12 July 2015Food and Drug Administration (FDA) (2011) GRAS Notification Oligofructose. GRN No.392. http://www.fda.gov/ucm/groups/fdagov-public/@fdagov-foodsgen/documents/document/ucm277112.pdf . Accessed 12 July 2015GME (2015) Gelatine manufactured Europe gelatine properties. http://www.gelatine.org/en/about-gelatine/properties.html . Accessed 12 July 2015ISO (2003) Sensory analysis. Guidelines for the use of quantitative response scales [ref. no.ISO 4121:2003]. International Organization for Standardization, GenevaISO (2008) Sensory analysis Vocabulary [ref. no.ISO 5492:2008]. International Organization for Standardization, GenevaLedur MJ, Tessaro I, Zapata CP (2013) Physicochemical characterization of Saccharides Powder obtained from Yacon Roots (Smallanthus sonchifolius) by membrane technology. Braz Arch Biol Technol 56(6):1024–1033Levin GV (2002) Tagatose, the new GRAS sweetener and health product. J Med Food 5(1):23–36Lina BAR, Jonker G, Kozianowski G (2002) Isomaltulose (Palatinose review of biological and toxicologycal studies). Food Chem Toxicol 40(10):1375–1381O’Donnell K, Kearsley M (2012) Sweeteners and sugar alternatives in food technology, 2nd edn. Wiley, ChichesterOh DK (2007) Tagatose: properties, applications, and biotechnological processes. Appl Microb Biotechnol 76(1):1–8Pacual MR, Calderón-Pascual V (2000) Food Microbiology. Analytical methodology for foods and drinks, 2nd edn. Diaz de Santos, MadridPeinado I, Rosa E, Heredia A, Andrés A (2012) Rheological characteristics of healthy sugar substituted spreadable strawberry product. J Food Eng 113(3):365–373Peinado I, Rosa E, Heredia A, Escriche I, Andrés A (2013) Optical, mechanical and sensorial properties of strawberry spreadable products formulated with isomaltulose. Food Bioprocess Tech 6(9):2353–2364Periche A, Heredia A, Escriche I, Andrés A, Castelló ML (2014) Optical, mechanical and sensory properties of based-isomaltulose gummy confections. Food Biosci 7:37–44Periche A, Heredia A, Escriche I, Andrés A, Castelló ML (2015a) Potential use of isomaltulose to produce healthier marshmallows. LWT-Food Sci Technol 62(1):605–612Periche Á, Castelló ML, Heredia A, Escriche I (2015b) Stevia rebaudiana, Oligofructose and isomaltulose as sugar replacers in Marshmallows: stability and antioxidant properties. J Food Process Preserv. doi: 10.1111/jfpp.12653Petersen-Skytte U (2006) Tagatose. In: Mitchell H (ed) Sweeteners and sugar alternatives in food technology. Blackwell Publishing, Oxford, pp 262–292Pimentel TC, Madrona GS, Prudencio SH (2015) Probiotic clarified apple juice with oligofructose or sucralose as sugar substitutes: sensory profile and acceptability. LWT–Food. Sci Technol 62(1):838–846Rababah TM, Al-Mahasneh MA, Kilani I, Yang W, Alhamad MN, Ereifeja E, Al-U’datta M (2011) Effect of jam processing and storage on total phenolics, antioxidant activity, and anthocyanins of different fruits. J Sci Food Agric 91:1096–1102Rubio-Arraez S, Sahuquillo S, Capella JV, Ortolá MD, Castelló ML (2015) Influence of healthy sweeteners (Tagatose and Oligofructose) on the physicochemical characteristics of orange marmalade. J Texture Stud 46(4):272–280Shahidi F, Liyana-Pathirana CM, Wall DS (2006) Antioxidant activity of white and black sesame seeds and their hull fractions. Food Chem 99(3):478–483Shukla V, Kandra P (2015) Development, physico-chemical and sensory evaluation of natural nutra candy. J Food Sci Tech Mys 52(11):7535–7539Taylor TP, Fasina O, Bell LN (2008) Physical properties and consumer liking of cookies prepared by replacing sucrose with tagatose. J Food Sci 73(3):145–151Van Den Heuvel EGHM, Muys T, Van Dokkum W, Schaafsma G (1999) Oligofructose stimulates calcium absorption in adolescents. Am J Clinic Nutr 69:544–548Vastenavond CM, Bertelsen H, Hansen SJ, Laursen RS, Saunders J, Eriknauer K (2012) Tagatose (D-tagatose). In: Nabors L (ed) Alternative sweeteners. Boca Ratón, Florida, USA, p 197–222Zeng Y, Zhang X, Guan Y, Sun Y (2012) Enzymatic hydrolysates from tuna backbone and the subsequent Maillard reaction with different ketohexoses. Int J Food Sci Technol 47:1293–130
    corecore