16 research outputs found

    Effect of fumonisins and Salmonella on digestive flora profiles assessed using a molecular tool (CE-SSCP).

    Get PDF
    Fumonisins (FB) are mycotoxins frequently found in vegetal feedstuffs, especially in maize used for pig feeding. Among fumonisins, FB1 was the better described toxin. It caused pulmonary and hepatic damages as well as immune response disorders in pigs that were recognised as especially sensitive to FB Intoxication. The FB1 immunosuppressor induced a higher susceptibility of pigs to gut pathogens such as E coli. Effects on Salmonella have poorly been studied despite the frequent asymptomatic carnage in pigs and the presumptive role of nora equilibrium on prevention of Salmonella excretion or re-excretion. To determine the influence of Salmonella carriage, fumonisins or both on digestive flora equilibrium, the use of a molecular technique CE-SSCP (Capillary-Electrophoresis Single Strand Conformation Polymorphism) appeared a good complement to the conventional bacteriological techniques. The objective was to assess the perturbation of nora associated with co-exposition in experimental conditions in absence of clinical sign

    Effect of fumonisins and Salmonella on digestive flora profiles assessed using a molecular tool (CE-SSCP).

    No full text
    Fumonisins (FB) are mycotoxins frequently found in vegetal feedstuffs, especially in maize used for pig feeding. Among fumonisins, FB1 was the better described toxin. It caused pulmonary and hepatic damages as well as immune response disorders in pigs that were recognised as especially sensitive to FB Intoxication. The FB1 immunosuppressor induced a higher susceptibility of pigs to gut pathogens such as E coli. Effects on Salmonella have poorly been studied despite the frequent asymptomatic carnage in pigs and the presumptive role of nora equilibrium on prevention of Salmonella excretion or re-excretion. To determine the influence of Salmonella carriage, fumonisins or both on digestive flora equilibrium, the use of a molecular technique CE-SSCP (Capillary-Electrophoresis Single Strand Conformation Polymorphism) appeared a good complement to the conventional bacteriological techniques. The objective was to assess the perturbation of nora associated with co-exposition in experimental conditions in absence of clinical sign.</p

    Angiogenesis associated with visceral and subcutaneous adipose tissue in severe human obesity

    Get PDF
    International audienceThe expansion of adipose tissue is linked to the development of its vasculature. However, the regulation of adipose tissue angiogenesis in humans has not been extensively studied. Our aim was to compare the angiogenesis associated with subcutaneous adipose tissue (SAT) and visceral adipose tissue (VAT) from the same obese patients in an in vivo model. Adipose tissue samples from visceral (VAT) and subcutaneous (SAT) sites, obtained from 36 obese patients (mean BMI 46.5 kg/m(2)) during bariatric surgery, were layered on chick chorioallantoĂŻc membrane (CAM). Both SAT and VAT expressed angiogenic factors without significant difference for vascular endothelial growth factor (VEGF) expression. Adipose tissue layered on CAM stimulated angiogenesis. Angiogenic stimulation was macroscopically detectable, with engulfment of the samples, in 39% and was evidenced by angiography in 59% of the samples. A connection between CAM and adipose tissue vessels was evidenced by immunohistochemistry, with recruitment of both avian and human endothelial cells. The angiogenic potency of adipose tissue was not related to its localization (with an angiogenic stimulation in 60% of SAT samples and 61% of VAT samples) or to adipocyte size or inflammatory infiltrate assessed in adipose samples before the graft on CAM. Stimulation of angiogenesis by adipose tissue was nearly abolished by bevacizumab, which specifically targets human VEGF. We have established a model to study the regulation of angiogenesis by human adipose tissue. This model highlighted the role of VEGF in angiogenesis in both SAT and VAT

    H2O2 and Engrailed 2 paracrine activity synergize to shape the zebrafish optic tectum

    No full text
    International audienceAlthough a physiological role for redox signaling is now clearly established, the processes sensitive to redox signaling remains to be identified. Ratiometric probes selective for H 2 O 2 have revealed its complex spatiotemporal dynamics during neural development and adult regeneration and perturbations of H 2 O 2 levels disturb cell plasticity and morphogenesis. Here we ask whether endogenous H 2 O 2 could participate in the patterning of the embryo. We find that perturbations of endogenous H 2 O 2 levels impact on the distribution of the Engrailed homeoprotein, a strong determinant of midbrain patterning. Engrailed 2 is secreted from cells with high H 2 O 2 levels and taken up by cells with low H 2 O 2 levels where it leads to increased H 2 O 2 production, steering the directional spread of the Engrailed gradient. These results illustrate the interplay between protein signaling pathways and metabolic processes during morphogenetic events

    Reciprocal Regulation of Shh Trafficking and H<sub>2</sub>O<sub>2</sub> Levels via a Noncanonical BOC-Rac1 Pathway

    No full text
    Among molecules that bridge environment, cell metabolism, and cell signaling, hydrogen peroxide (H2O2) recently appeared as an emerging but central player. Its level depends on cell metabolism and environment and was recently shown to play key roles during embryogenesis, contrasting with its long-established role in disease progression. We decided to explore whether the secreted morphogen Sonic hedgehog (Shh), known to be essential in a variety of biological processes ranging from embryonic development to adult tissue homeostasis and cancers, was part of these interactions. Here, we report that H2O2 levels control key steps of Shh delivery in cell culture: increased levels reduce primary secretion, stimulate endocytosis and accelerate delivery to recipient cells; in addition, physiological in vivo modulation of H2O2 levels changes Shh distribution and tissue patterning. Moreover, a feedback loop exists in which Shh trafficking controls H2O2 synthesis via a non-canonical BOC-Rac1 pathway, leading to cytoneme growth. Our findings reveal that Shh directly impacts its own distribution, thus providing a molecular explanation for the robustness of morphogenesis to both environmental insults and individual variability

    Reciprocal Regulation of Shh Trafficking and H2O2 Levels via a Noncanonical BOC-Rac1 Pathway

    No full text
    Among molecules that bridge environment, cell metabolism, and cell signaling, hydrogen peroxide (H2O2) recently appeared as an emerging but central player. Its level depends on cell metabolism and environment and was recently shown to play key roles during embryogenesis, contrasting with its long-established role in disease progression. We decided to explore whether the secreted morphogen Sonic hedgehog (Shh), known to be essential in a variety of biological processes ranging from embryonic development to adult tissue homeostasis and cancers, was part of these interactions. Here, we report that H2O2 levels control key steps of Shh delivery in cell culture: increased levels reduce primary secretion, stimulate endocytosis and accelerate delivery to recipient cells; in addition, physiological in vivo modulation of H2O2 levels changes Shh distribution and tissue patterning. Moreover, a feedback loop exists in which Shh trafficking controls H2O2 synthesis via a non-canonical BOC-Rac1 pathway, leading to cytoneme growth. Our findings reveal that Shh directly impacts its own distribution, thus providing a molecular explanation for the robustness of morphogenesis to both environmental insults and individual variability
    corecore