880 research outputs found

    High-performance acceleration of 2-D and 3D CNNs on FPGAs using static block floating point

    Get PDF
    Over the past few years, 2-D convolutional neural networks (CNNs) have demonstrated their great success in a wide range of 2-D computer vision applications, such as image classification and object detection. At the same time, 3-D CNNs, as a variant of 2-D CNNs, have shown their excellent ability to analyze 3-D data, such as video and geometric data. However, the heavy algorithmic complexity of 2-D and 3-D CNNs imposes a substantial overhead over the speed of these networks, which limits their deployment in real-life applications. Although various domain-specific accelerators have been proposed to address this challenge, most of them only focus on accelerating 2-D CNNs, without considering their computational efficiency on 3-D CNNs. In this article, we propose a unified hardware architecture to accelerate both 2-D and 3-D CNNs with high hardware efficiency. Our experiments demonstrate that the proposed accelerator can achieve up to 92.4% and 85.2% multiply-accumulate efficiency on 2-D and 3-D CNNs, respectively. To improve the hardware performance, we propose a hardware-friendly quantization approach called static block floating point (BFP), which eliminates the frequent representation conversions required in traditional dynamic BFP arithmetic. Comparing with the integer linear quantization using zero-point, the static BFP quantization can decrease the logic resource consumption of the convolutional kernel design by nearly 50% on a field-programmable gate array (FPGA). Without time-consuming retraining, the proposed static BFP quantization is able to quantize the precision to 8-bit mantissa with negligible accuracy loss. As different CNNs on our reconfigurable system require different hardware and software parameters to achieve optimal hardware performance and accuracy, we also propose an automatic tool for parameter optimization. Based on our hardware design and optimization, we demonstrate that the proposed accelerator can achieve 3.8-5.6 times higher energy efficiency than graphics processing unit (GPU) implementation. Comparing with the state-of-the-art FPGA-based accelerators, our design achieves higher generality and up to 1.4-2.2 times higher resource efficiency on both 2-D and 3-D CNNs

    Luttinger Parameter g for Metallic Carbon Nanotubes and Related Systems

    Full text link
    The random phase approximation (RPA) theory is used to derive the Luttinger parameter g for metallic carbon nanotubes. The results are consistent with the Tomonaga-Luttinger models. All metallic carbon nanotubes, regardless if they are armchair tubes, zigzag tubes, or chiral tubes, should have the same Luttinger parameter g. However, a (10,10) carbon peapod should have a smaller g value than a (10,10) carbon nanotube. Changing the Fermi level by applying a gate voltage has only a second order effect on the g value. RPA theory is a valid approach to calculate plasmon energy in carbon nanotube systems, regardless if the ground state is a Luttinger liquid or Fermi liquid. (This paper was published in PRB 66, 193405 (2002). However, Eqs. (6), (9), and (19) were misprinted there.)Comment: 2 figure

    Two novel transcriptional regulators are essential for infection-related morphogenesis and pathogenicity of the rice blast fungus Magnaporthe oryzae.

    Get PDF
    This is the final version of the article. Available from the publisher via the DOI in this record.The cyclic AMP-dependent protein kinase A signaling pathway plays a major role in regulating plant infection by the rice blast fungus Magnaporthe oryzae. Here, we report the identification of two novel genes, MoSOM1 and MoCDTF1, which were discovered in an insertional mutagenesis screen for non-pathogenic mutants of M. oryzae. MoSOM1 or MoCDTF1 are both necessary for development of spores and appressoria by M. oryzae and play roles in cell wall differentiation, regulating melanin pigmentation and cell surface hydrophobicity during spore formation. MoSom1 strongly interacts with MoStu1 (Mstu1), an APSES transcription factor protein, and with MoCdtf1, while also interacting more weakly with the catalytic subunit of protein kinase A (CpkA) in yeast two hybrid assays. Furthermore, the expression levels of MoSOM1 and MoCDTF1 were significantly reduced in both Δmac1 and ΔcpkA mutants, consistent with regulation by the cAMP/PKA signaling pathway. MoSom1-GFP and MoCdtf1-GFP fusion proteins localized to the nucleus of fungal cells. Site-directed mutagenesis confirmed that nuclear localization signal sequences in MoSom1 and MoCdtf1 are essential for their sub-cellular localization and biological functions. Transcriptional profiling revealed major changes in gene expression associated with loss of MoSOM1 during infection-related development. We conclude that MoSom1 and MoCdtf1 functions downstream of the cAMP/PKA signaling pathway and are novel transcriptional regulators associated with cellular differentiation during plant infection by the rice blast fungus.Funding: This work was supported by National Key Basic Research and Development Program of China (2012CB114002), by Program for Changjiang Scholars and Innovative Research Team in University (IRT0943), by the Natural Science Foundation of China (Grant Nos. 30970129 and 31071648) and the Doctoral Fund of Ministry of Education of China (20100101110097) to ZW
    • …
    corecore