13 research outputs found

    A Comprehensive Pan-Cancer Molecular Study of Gynecologic and Breast Cancers

    Get PDF
    We analyzed molecular data on 2,579 tumors from The Cancer Genome Atlas (TCGA) of four gynecological types plus breast. Our aims were to identify shared and unique molecular features, clinically significant subtypes, and potential therapeutic targets. We found 61 somatic copy-number alterations (SCNAs) and 46 significantly mutated genes (SMGs). Eleven SCNAs and 11 SMGs had not been identified in previous TCGA studies of the individual tumor types. We found functionally significant estrogen receptor-regulated long non-coding RNAs (lncRNAs) and gene/lncRNA interaction networks. Pathway analysis identified subtypes with high leukocyte infiltration, raising potential implications for immunotherapy. Using 16 key molecular features, we identified five prognostic subtypes and developed a decision tree that classified patients into the subtypes based on just six features that are assessable in clinical laboratories. By performing molecular analyses of 2,579 TCGA gynecological (OV, UCEC, CESC, and UCS) and breast tumors, Berger et al. identify five prognostic subtypes using 16 key molecular features and propose a decision tree based on six clinically assessable features that classifies patients into the subtypes

    High positive predictive value (PPV) of cell-free DNA (cfDNA) testing in a clinical study of 10,000 consecutive pregnancies

    No full text
    Background: Cell-free DNA (cfDNA) analysis in maternal blood for the detection of fetal Down syndrome is gradually replacing first trimester screening. We present here a large clinical series of 10,000 consecutive pregnancies. Objectives: To study the reliability of cell-free DNA (cfDNA) analysis in maternal blood for the detection of fetal trisomy 21, 18 and 13 in a clinical setting in 10,000 consecutive pregnancies with variable risk. cfDNA testing has been evaluated in an increasing number of pregnancies mainly at high risk for fetal trisomy, and some studies have suggested that its positive predictive value (PPV) might be lower in low-risk populations. Study design: CfDNA testing using the Harmony™ Prenatal Test was performed in 10,000 consecutive pregnancies with high or low a-priori risk for fetal trisomy 21, 18 and 13. Results: In 147 (1.47%) of the 10,000 pregnancies a high-risk cfDNA testing result indicated trisomy 21 (n=121), trisomy 18 (n=15) or trisomy 13 (n=11). It failed to detect 5 trisomies (2 trisomies 21, 2 trisomies 18, and 1 trisomy 13). Five false-positive results were recorded (4 in the high and 1 in the low risk population). The overall positive predictive value (PPV) was 96%, with a PPV of 96% in the high-risk (>1/200) population and 97% in the low risk (<1/200) population. Conclusions: In this large clinical series of 10,000 consecutive pregnancies, cfDNA testing proved very reliable in detecting fetal trisomy 21, 18 and 13, with a very high PPV both in high and low risk populations

    The BES upgrade

    No full text
    The Beijing Spectrometer (BES) detector is a general purpose solenoid detector at the Beijing Electron Positron Collider (BEPC) in Beijing, China, that has collected large numbers of J/ψ, ψ′, D s, D and τ events. In this paper, we describe the recent upgrade of the initial BES detector (BESI) to the improved BESII detector
    corecore