6 research outputs found

    Solid-state Synthesis of Phase Pure CuBi2O4 by Sequential Ball Milling

    Full text link
    Bismuth-based metal oxides are an intriguing class of photoelectrode materials that can potentially enable large-scale solar hydrogen production via photoelectrochemical (PEC) water-splitting. For realizing such PEC devices, Kusachiite (copper bismuth oxide) is one of the most promising photocathode materials for high solar to hydrogen efficiency. Here we attempt to synthesize phase pure copper bismuth oxide (CuBi2O4) nanopowders using a facile solid-state reaction technique subsequently sintered at 750 0C for 4 h in air. These CuBi2O4 (CBO) powders have been further sequentially ball milled (SBM) up to 25 h to elucidate the milling duration effect on the optical bandgap of the ball milled CuBi2O4 (SBM-CBO). The structural, optical, and Raman studies suggest that phase pure tetragonal CBO could be grown from raw CuO and Bi2O3 powders. The variations in morphology and chemical composition of CBO with increasing milling hours were examined using field emission scanning electron microscopy (FE-SEM) and Energy Dispersive X-ray (EDX) microanalysis, respectively. The optical bandgap was measured in the range of 1.70 - 1.85 eV from the UV-VIS-NIR Diffuse reflection data of SBM-CBO powders. The CBO photocathode materials with variable structural and optical properties could be a promising candidate for self-sustained PEC generation of hydrogen fuel.Comment: 4 pages, 5 figures, 2022 4th International Conference on Sustainable Technologies for Industry 4.0 (STI

    Natural Sunlight Driven Photocatalytic Removal of Toxic Textile Dyes in Water Using B-Doped ZnO/TiO<sub>2</sub> Nanocomposites

    No full text
    A novel B-doped ZnO/TiO2 (B–ZnO/TiO2) nanocomposite photocatalyst was prepared using a mechanochemical–calcination method. For the characterization of the synthesized B–ZnO/TiO2 photocatalyst, XRD, FESEM-EDS, FTIR, UV-Vis DRS, BET, PL, and XPS techniques were used. The bandgap energy of B–ZnO/TiO2 was reduced, resulting in enhanced visible-light absorption. Significant PL quenching confirmed the reduction in the electron–hole recombination rate. Furthermore, reduced crystallite size and a larger surface area were obtained. Hence, the B–ZnO/TiO2 photocatalyst exhibited better photocatalytic activity than commercial TiO2, ZnO, B–ZnO, and ZnO/TiO2 in the removal of methylene blue (MB) dye under natural sunlight irradiation. The effects of various parameters, such as initial concentration, photocatalyst amount, solution pH, and irradiation time, were studied. Under optimal conditions (MB concentration of 15 mg/L, pH 11, B–ZnO/TiO2 amount of 30 mg, and 15 min of operation), a maximum MB removal efficiency of ~95% was obtained. A plausible photocatalytic degradation mechanism of MB with B–ZnO/TiO2 was estimated from the scavenger test, and it was observed that the •O2− and •OH radicals were potential active species for the MB degradation. Cyclic experiments indicated the high stability and reusability of B–ZnO/TiO2, which confirmed that it can be an economical and environmentally friendly photocatalyst

    Natural Sunlight Driven Photocatalytic Removal of Toxic Textile Dyes in Water Using B-Doped ZnO/TiO2 Nanocomposites

    No full text
    A novel B-doped ZnO/TiO2 (B&ndash;ZnO/TiO2) nanocomposite photocatalyst was prepared using a mechanochemical&ndash;calcination method. For the characterization of the synthesized B&ndash;ZnO/TiO2 photocatalyst, XRD, FESEM-EDS, FTIR, UV-Vis DRS, BET, PL, and XPS techniques were used. The bandgap energy of B&ndash;ZnO/TiO2 was reduced, resulting in enhanced visible-light absorption. Significant PL quenching confirmed the reduction in the electron&ndash;hole recombination rate. Furthermore, reduced crystallite size and a larger surface area were obtained. Hence, the B&ndash;ZnO/TiO2 photocatalyst exhibited better photocatalytic activity than commercial TiO2, ZnO, B&ndash;ZnO, and ZnO/TiO2 in the removal of methylene blue (MB) dye under natural sunlight irradiation. The effects of various parameters, such as initial concentration, photocatalyst amount, solution pH, and irradiation time, were studied. Under optimal conditions (MB concentration of 15 mg/L, pH 11, B&ndash;ZnO/TiO2 amount of 30 mg, and 15 min of operation), a maximum MB removal efficiency of ~95% was obtained. A plausible photocatalytic degradation mechanism of MB with B&ndash;ZnO/TiO2 was estimated from the scavenger test, and it was observed that the &bull;O2&minus; and &bull;OH radicals were potential active species for the MB degradation. Cyclic experiments indicated the high stability and reusability of B&ndash;ZnO/TiO2, which confirmed that it can be an economical and environmentally friendly photocatalyst

    Environmental remediation by hydroxyapatite: Solid state synthesis utilizing waste chicken eggshell and adsorption experiment with Congo red dye

    No full text
    This study reports the adsorption efficacy of hydroxyapatite (HAp) for removing Congo Red (CR) dye from aqueous solution. HAp was synthesized utilizing chicken eggshell as a precursor of Ca source. Solid state synthesis method was implemented which comprised calcination at 950 °C (E-HAp950). XRD analysis confirmed the formation of bi-phasic HAp with 15.5% of β-TCP. Elemental composition was evaluated by XPS and EDX analysis. FESEM analysis revealed the particles are of plate and spherical shaped also confirmed by the TEM images. DLS particle size, zeta potential, BET surface area and point of zero charge were also evaluated. Adsorption efficacy of E-HAp950 for removing CR was evaluated by batch adsorption experiment. Maximum adsorption capacity (qmax) was found to be 9.64 mgg−1 which was best explained by the non-linear fitting (R2 = 0.98) of Langmuir isotherm. Adsorption kinetics profusely followed pseudo second order kinetic model (R2 = 0.999) with qe (experimental) being very much closer to qe (calculative) for this model. Thus, hydroxyapatite prepared by utilizing eggshell waste through solid state method has the potential to remove toxic dyes
    corecore