48 research outputs found

    Growth Phase Dependent Cell Shape of Haloarcula

    Get PDF
    Several haloarchaea are reported to be pleomorphic, while others exhibit remarkable shapes, such as squares. Recently, Haloferax volcanii was found to alter its morphology during growth. Cells are motile rods in early exponential phase, and immotile plates in stationary phase. It is unknown if this growth phase dependent cell shape alteration is a specific feature of Hfx. volcanii, or conserved amongst haloarchaea. Here, we studied the cell shape and motility of two haloarchaea species Haloarcula hispanica and Haloarcula californiae. With a combination of light and electron microscopy, we observed that both strains undergo a growth phase dependent morphological development, albeit in a slightly different fashion as Hfx. volcanii. For both Haloarcula strains, the cell size is changing throughout growth. Cell shape seems to be related with motility, as highly motile cells on semi-solid agar plates are predominantly rod-shaped. We conclude that the growth phase dependent cell morphology alteration might be a common feature amongst haloarchaea, and that cell shape is generally linked with a motile life style. The conservation of this phenomenon underscores the importance of studies of the molecular mechanisms regulating cell shape in archaea

    Growth Phase Dependent Cell Shape of Haloarcula

    Get PDF
    Several haloarchaea are reported to be pleomorphic, while others exhibit remarkable shapes, such as squares. Recently, Haloferax volcanii was found to alter its morphology during growth. Cells are motile rods in early exponential phase, and immotile plates in stationary phase. It is unknown if this growth phase dependent cell shape alteration is a specific feature of Hfx. volcanii, or conserved amongst haloarchaea. Here, we studied the cell shape and motility of two haloarchaea species Haloarcula hispanica and Haloarcula californiae. With a combination of light and electron microscopy, we observed that both strains undergo a growth phase dependent morphological development, albeit in a slightly different fashion as Hfx. volcanii. For both Haloarcula strains, the cell size is changing throughout growth. Cell shape seems to be related with motility, as highly motile cells on semi-solid agar plates are predominantly rod-shaped. We conclude that the growth phase dependent cell morphology alteration might be a common feature amongst haloarchaea, and that cell shape is generally linked with a motile life style. The conservation of this phenomenon underscores the importance of studies of the molecular mechanisms regulating cell shape in archaea

    The viral susceptibility of the <i>Haloferax</i> species

    Get PDF
    Viruses can infect members of all three domains of life. However, little is known about viruses infecting archaea and the mechanisms that determine their host interactions are poorly understood. Investigations of molecular mechanisms of viral infection rely on genetically accessible virus–host model systems. Euryarchaea belonging to the genus Haloferax are interesting models, as a reliable genetic system and versatile microscopy methods are available. However, only one virus infecting the Haloferax species is currently available. In this study, we tested ~100 haloarchaeal virus isolates for their infectivity on 14 Haloferax strains. From this, we identified 10 virus isolates in total capable of infecting Haloferax strains, which represented myovirus or siphovirus morphotypes. Surprisingly, the only susceptible strain of all 14 tested was Haloferax gibbonsii LR2-5, which serves as an auspicious host for all of these 10 viruses. By applying comparative genomics, we shed light on factors determining the host range of haloarchaeal viruses on Haloferax. We anticipate our study to be a starting point in the study of haloarchaeal virus–host interaction

    The Viral Susceptibility of the Haloferax Species

    Get PDF
    Viruses can infect members of all three domains of life. However, little is known about viruses infecting archaea and the mechanisms that determine their host interactions are poorly understood. Investigations of molecular mechanisms of viral infection rely on genetically accessible virus–host model systems. Euryarchaea belonging to the genus Haloferax are interesting models, as a reliable genetic system and versatile microscopy methods are available. However, only one virus infecting the Haloferax species is currently available. In this study, we tested ~100 haloarchaeal virus isolates for their infectivity on 14 Haloferax strains. From this, we identified 10 virus isolates in total capable of infecting Haloferax strains, which represented myovirus or siphovirus morphotypes. Surprisingly, the only susceptible strain of all 14 tested was Haloferax gibbonsii LR2-5, which serves as an auspicious host for all of these 10 viruses. By applying comparative genomics, we shed light on factors determining the host range of haloarchaeal viruses on Haloferax. We anticipate our study to be a starting point in the study of haloarchaeal virus–host interactions

    The Viral Susceptibility of the Haloferax Species

    Get PDF
    Viruses can infect members of all three domains of life. However, little is known about viruses infecting archaea and the mechanisms that determine their host interactions are poorly understood. Investigations of molecular mechanisms of viral infection rely on genetically accessible virus–host model systems. Euryarchaea belonging to the genus Haloferax are interesting models, as a reliable genetic system and versatile microscopy methods are available. However, only one virus infecting the Haloferax species is currently available. In this study, we tested ~100 haloarchaeal virus isolates for their infectivity on 14 Haloferax strains. From this, we identified 10 virus isolates in total capable of infecting Haloferax strains, which represented myovirus or siphovirus morphotypes. Surprisingly, the only susceptible strain of all 14 tested was Haloferax gibbonsii LR2-5, which serves as an auspicious host for all of these 10 viruses. By applying comparative genomics, we shed light on factors determining the host range of haloarchaeal viruses on Haloferax. We anticipate our study to be a starting point in the study of haloarchaeal virus–host interactions

    Archaeal virus entry and egress

    Get PDF
    Archaeal viruses display a high degree of structural and genomic diversity. Few details are known about the mechanisms by which these viruses enter and exit their host cells. Research on archaeal viruses has lately made significant progress due to advances in genetic tools and imaging techniques, such as cryo-electron tomography (cryo-ET). In recent years, a steady output of newly identified archaeal viral receptors and egress mechanisms has offered the first insight into how archaeal viruses interact with the archaeal cell envelope. As more details about archaeal viral entry and egress are unravelled, patterns are starting to emerge. This helps to better understand the interactions between viruses and the archaeal cell envelope and how these compare to infection strategies of viruses in other domains of life. Here, we provide an overview of recent developments in the field of archaeal viral entry and egress, shedding light onto the most elusive part of the virosphere.</p

    Archaeal virus entry and egress

    Get PDF
    Archaeal viruses display a high degree of structural and genomic diversity. Few details are known about the mechanisms by which these viruses enter and exit their host cells. Research on archaeal viruses has lately made significant progress due to advances in genetic tools and imaging techniques, such as cryo-electron tomography (cryo-ET). In recent years, a steady output of newly identified archaeal viral receptors and egress mechanisms has offered the first insight into how archaeal viruses interact with the archaeal cell envelope. As more details about archaeal viral entry and egress are unravelled, patterns are starting to emerge. This helps to better understand the interactions between viruses and the archaeal cell envelope and how these compare to infection strategies of viruses in other domains of life. Here, we provide an overview of recent developments in the field of archaeal viral entry and egress, shedding light onto the most elusive part of the virosphere.</p

    Archaeal virus entry and egress

    Get PDF
    Archaeal viruses display a high degree of structural and genomic diversity. Few details are known about the mechanisms by which these viruses enter and exit their host cells. Research on archaeal viruses has lately made significant progress due to advances in genetic tools and imaging techniques, such as cryo-electron tomography (cryo-ET). In recent years, a steady output of newly identified archaeal viral receptors and egress mechanisms has offered the first insight into how archaeal viruses interact with the archaeal cell envelope. As more details about archaeal viral entry and egress are unravelled, patterns are starting to emerge. This helps to better understand the interactions between viruses and the archaeal cell envelope and how these compare to infection strategies of viruses in other domains of life. Here, we provide an overview of recent developments in the field of archaeal viral entry and egress, shedding light onto the most elusive part of the virosphere.</p

    Archaeal virus entry and egress

    Get PDF
    Archaeal viruses display a high degree of structural and genomic diversity. Few details are known about the mechanisms by which these viruses enter and exit their host cells. Research on archaeal viruses has lately made significant progress due to advances in genetic tools and imaging techniques, such as cryo-electron tomography (cryo-ET). In recent years, a steady output of newly identified archaeal viral receptors and egress mechanisms has offered the first insight into how archaeal viruses interact with the archaeal cell envelope. As more details about archaeal viral entry and egress are unravelled, patterns are starting to emerge. This helps to better understand the interactions between viruses and the archaeal cell envelope and how these compare to infection strategies of viruses in other domains of life. Here, we provide an overview of recent developments in the field of archaeal viral entry and egress, shedding light onto the most elusive part of the virosphere.</p

    Archaeal virus entry and egress

    Get PDF
    Archaeal viruses display a high degree of structural and genomic diversity. Few details are known about the mechanisms by which these viruses enter and exit their host cells. Research on archaeal viruses has lately made significant progress due to advances in genetic tools and imaging techniques, such as cryo-electron tomography (cryo-ET). In recent years, a steady output of newly identified archaeal viral receptors and egress mechanisms has offered the first insight into how archaeal viruses interact with the archaeal cell envelope. As more details about archaeal viral entry and egress are unravelled, patterns are starting to emerge. This helps to better understand the interactions between viruses and the archaeal cell envelope and how these compare to infection strategies of viruses in other domains of life. Here, we provide an overview of recent developments in the field of archaeal viral entry and egress, shedding light onto the most elusive part of the virosphere.</p
    corecore