69 research outputs found

    Homomultimeric structure by assembly of sirv2 p98 proteins or p98 variants, conjugate and uses thereof

    Get PDF
    The present invention relates to a homomultimeric protein structure constituted by assembled monomers of the P98 protein of Sulfolobus islandicus rod-shaped virus 2 (SIRV2) or assembled monomer variants of said P98 protein. In a particular embodiment, this homomultimeric protein structure has a seven-fold rotational symmetry, and is found in an open conformation or closed conformation. A particular structure has the form of baseless 7-face pyramid. The invention also relates to a conjugate comprising or consisting of a homomultimeric protein structure of the invention to which one or more heterologous molecule(s) is attached. Furthermore, the invention also concerns a homomultimeric protein structure or a conjugate of the invention, inserted into or exposed at the surface of a lipid layer or bilayer, of a vesicle or of a cell, and their uses thereof

    Homomultimeric structure by assembly of sirv2 p98 proteins or p98 variants, conjugate and uses thereof

    Get PDF
    The present invention relates to a homomultimeric protein structure constituted by assembled monomers of the P98 protein of Sulfolobus islandicus rod-shaped virus 2 (SIRV2) or assembled monomer variants of said P98 protein. In a particular embodiment, this homomultimeric protein structure has a seven-fold rotational symmetry, and is found in an open conformation or closed conformation. A particular structure has the form of baseless 7-face pyramid. The invention also relates to a conjugate comprising or consisting of a homomultimeric protein structure of the invention to which one or more heterologous molecule(s) is attached. Furthermore, the invention also concerns a homomultimeric protein structure or a conjugate of the invention, inserted into or exposed at the surface of a lipid layer or bilayer, of a vesicle or of a cell, and their uses thereof

    Archaeal host cell recognition and viral binding of HFTV1 to its Haloferax host

    Get PDF
    Viruses are highly abundant and the main predator of microorganisms. Microorganisms of each domain of life are infected by dedicated viruses. Viruses infecting archaea are genomically and structurally highly diverse. Archaea are undersampled for viruses in comparison with bacteria and eukaryotes. Consequently, the infection mechanisms of archaeal viruses are largely unknown, and most available knowledge stems from viruses infecting a select group of archaea, such as crenarchaea. We employed Haloferax tailed virus 1 (HFTV1) and its host, Haloferax gibbonsii LR2-5, to study viral infection in euryarchaea. We found that HFTV1, which has a siphovirus morphology, is virulent, and interestingly, viral particles adsorb to their host several orders of magnitude faster than most studied haloarchaeal viruses. As the binding site for infection, HFTV1 uses the cell wall component surface (S)-layer protein. Electron microscopy of infected cells revealed that viral particles often made direct contact with their heads to the cell surface, whereby the virion tails were perpendicular to the surface. This seemingly unfavorable orientation for genome delivery might represent a first reversible contact between virus and cell and could enhance viral adsorption rates. In a next irreversible step, the virion tail is orientated toward the cell surface for genome delivery. With these findings, we uncover parallels between entry mechanisms of archaeal viruses and those of bacterial jumbo phages and bacterial gene transfer agents.IMPORTANCE Archaeal viruses are the most enigmatic members of the virosphere. These viruses infect ubiquitous archaea and display an unusually high structural and genetic diversity. Unraveling their mechanisms of infection will shed light on the question if entry and egress mechanisms are highly conserved between viruses infecting a single domain of life or if these mechanisms are dependent on the morphology of the virus and the growth conditions of the host. We studied the entry mechanism of the tailed archaeal virus HFTV1. This showed that despite "typical" siphovirus morphology, the infection mechanism is different from standard laboratory models of tailed phages. We observed that particles bound first with their head to the host cell envelope, and, as such, we discovered parallels between archaeal viruses and nonmodel bacteriophages. This work contributes to a better understanding of entry mechanisms of archaeal viruses and a more complete view of microbial viruses in general.Archaeal viruses are the most enigmatic members of the virosphere. These viruses infect ubiquitous archaea and display an unusually high structural and genetic diversity.Peer reviewe

    Growth Phase Dependent Cell Shape of Haloarcula

    Get PDF
    Several haloarchaea are reported to be pleomorphic, while others exhibit remarkable shapes, such as squares. Recently, Haloferax volcanii was found to alter its morphology during growth. Cells are motile rods in early exponential phase, and immotile plates in stationary phase. It is unknown if this growth phase dependent cell shape alteration is a specific feature of Hfx. volcanii, or conserved amongst haloarchaea. Here, we studied the cell shape and motility of two haloarchaea species Haloarcula hispanica and Haloarcula californiae. With a combination of light and electron microscopy, we observed that both strains undergo a growth phase dependent morphological development, albeit in a slightly different fashion as Hfx. volcanii. For both Haloarcula strains, the cell size is changing throughout growth. Cell shape seems to be related with motility, as highly motile cells on semi-solid agar plates are predominantly rod-shaped. We conclude that the growth phase dependent cell morphology alteration might be a common feature amongst haloarchaea, and that cell shape is generally linked with a motile life style. The conservation of this phenomenon underscores the importance of studies of the molecular mechanisms regulating cell shape in archaea

    Growth Phase Dependent Cell Shape of Haloarcula

    Get PDF
    Several haloarchaea are reported to be pleomorphic, while others exhibit remarkable shapes, such as squares. Recently, Haloferax volcanii was found to alter its morphology during growth. Cells are motile rods in early exponential phase, and immotile plates in stationary phase. It is unknown if this growth phase dependent cell shape alteration is a specific feature of Hfx. volcanii, or conserved amongst haloarchaea. Here, we studied the cell shape and motility of two haloarchaea species Haloarcula hispanica and Haloarcula californiae. With a combination of light and electron microscopy, we observed that both strains undergo a growth phase dependent morphological development, albeit in a slightly different fashion as Hfx. volcanii. For both Haloarcula strains, the cell size is changing throughout growth. Cell shape seems to be related with motility, as highly motile cells on semi-solid agar plates are predominantly rod-shaped. We conclude that the growth phase dependent cell morphology alteration might be a common feature amongst haloarchaea, and that cell shape is generally linked with a motile life style. The conservation of this phenomenon underscores the importance of studies of the molecular mechanisms regulating cell shape in archaea

    The Viral Susceptibility of the Haloferax Species

    Get PDF
    Viruses can infect members of all three domains of life. However, little is known about viruses infecting archaea and the mechanisms that determine their host interactions are poorly understood. Investigations of molecular mechanisms of viral infection rely on genetically accessible virus–host model systems. Euryarchaea belonging to the genus Haloferax are interesting models, as a reliable genetic system and versatile microscopy methods are available. However, only one virus infecting the Haloferax species is currently available. In this study, we tested ~100 haloarchaeal virus isolates for their infectivity on 14 Haloferax strains. From this, we identified 10 virus isolates in total capable of infecting Haloferax strains, which represented myovirus or siphovirus morphotypes. Surprisingly, the only susceptible strain of all 14 tested was Haloferax gibbonsii LR2-5, which serves as an auspicious host for all of these 10 viruses. By applying comparative genomics, we shed light on factors determining the host range of haloarchaeal viruses on Haloferax. We anticipate our study to be a starting point in the study of haloarchaeal virus–host interactions

    The viral susceptibility of the <i>Haloferax</i> species

    Get PDF
    Viruses can infect members of all three domains of life. However, little is known about viruses infecting archaea and the mechanisms that determine their host interactions are poorly understood. Investigations of molecular mechanisms of viral infection rely on genetically accessible virus–host model systems. Euryarchaea belonging to the genus Haloferax are interesting models, as a reliable genetic system and versatile microscopy methods are available. However, only one virus infecting the Haloferax species is currently available. In this study, we tested ~100 haloarchaeal virus isolates for their infectivity on 14 Haloferax strains. From this, we identified 10 virus isolates in total capable of infecting Haloferax strains, which represented myovirus or siphovirus morphotypes. Surprisingly, the only susceptible strain of all 14 tested was Haloferax gibbonsii LR2-5, which serves as an auspicious host for all of these 10 viruses. By applying comparative genomics, we shed light on factors determining the host range of haloarchaeal viruses on Haloferax. We anticipate our study to be a starting point in the study of haloarchaeal virus–host interaction

    The Viral Susceptibility of the Haloferax Species

    Get PDF
    Viruses can infect members of all three domains of life. However, little is known about viruses infecting archaea and the mechanisms that determine their host interactions are poorly understood. Investigations of molecular mechanisms of viral infection rely on genetically accessible virus–host model systems. Euryarchaea belonging to the genus Haloferax are interesting models, as a reliable genetic system and versatile microscopy methods are available. However, only one virus infecting the Haloferax species is currently available. In this study, we tested ~100 haloarchaeal virus isolates for their infectivity on 14 Haloferax strains. From this, we identified 10 virus isolates in total capable of infecting Haloferax strains, which represented myovirus or siphovirus morphotypes. Surprisingly, the only susceptible strain of all 14 tested was Haloferax gibbonsii LR2-5, which serves as an auspicious host for all of these 10 viruses. By applying comparative genomics, we shed light on factors determining the host range of haloarchaeal viruses on Haloferax. We anticipate our study to be a starting point in the study of haloarchaeal virus–host interactions
    • …
    corecore