100 research outputs found
Finite-time stabilization of discontinuous fuzzy inertial Cohen–Grossberg neural networks with mixed time-varying delays
This article aims to study a class of discontinuous fuzzy inertial Cohen–Grossberg neural networks (DFICGNNs) with discrete and distributed time-delays. First of all, in order to deal with the discontinuities by the differential inclusion theory, based on a generalized variable transformation including two tunable variables, the mixed time-varying delayed DFICGNN is transformed into a first-order differential system. Then, by constructing a modified Lyapunov–Krasovskii functional concerning with the mixed time-varying delays and designing a delayed feedback control law, delay-dependent criteria formulated by algebraic inequalities are derived for guaranteeing the finite-time stabilization (FTS) for the addressed system. Moreover, the settling time is estimated. Some related stability results on inertial neural networks is extended. Finally, two numerical examples are carried out to verify the effectiveness of the established results
Dynamical Behavior of Nonautonomous Stochastic Reaction-Diffusion Neural Network Models
This brief investigates nonautonomous stochastic reaction-diffusion neural-network models with S-type distributed delays. First, the existence and uniqueness of mild solution are studied under the Lipschitz condition without the linear growth condition. Due to the existence of a nonautonomous reaction-diffusion term and the infinite dimensional Wiener process, the criteria for the well-posedness of the models are established based on the evolution system theory. Then, the S-type distributed delay, which is an infinite delay, is handled by the truncation method, and sufficient conditions for the global exponential stability are obtained by constructing a simple Lyapunov-Krasovskii functional candidate. Finally, neural-network examples and an illustrative example are given to show the applications of the obtained results.</p
p
We are concerned with the exponential stability problem of a class of nonlinear hybrid stochastic heat equations (known as stochastic heat equations with Markovian switching) in an infinite state space. The fixed point theory is utilized to discuss the existence, uniqueness, and pth moment exponential stability of the mild solution. Moreover, we also acquire the Lyapunov exponents by combining the fixed point theory and the Gronwall inequality. At last, two examples are provided to verify the effectiveness of our obtained results
Survival analysis and probability density function of switching heroin model
We study a switching heroin epidemic model in this paper, in which the switching of supply of heroin occurs due to the flowering period and fruiting period of opium poppy plants. Precisely, we give three equations to represent the dynamics of the susceptible, the dynamics of the untreated drug addicts and the dynamics of the drug addicts under treatment, respectively, within a local population, and the coefficients of each equation are functions of Markov chains taking values in a finite state space. The first concern is to prove the existence and uniqueness of a global positive solution to the switching model. Then, the survival dynamics including the extinction and persistence of the untreated drug addicts under some moderate conditions are derived. The corresponding numerical simulations reveal that the densities of sample paths depend on regime switching, and larger intensities of the white noises yield earlier times for extinction of the untreated drug addicts. Especially, when the switching model degenerates to the constant model, we show the existence of the positive equilibrium point under moderate conditions, and we give the expression of the probability density function around the positive equilibrium point
Cellular anatomy of the mouse primary motor cortex.
An essential step toward understanding brain function is to establish a structural framework with cellular resolution on which multi-scale datasets spanning molecules, cells, circuits and systems can be integrated and interpreted1. Here, as part of the collaborative Brain Initiative Cell Census Network (BICCN), we derive a comprehensive cell type-based anatomical description of one exemplar brain structure, the mouse primary motor cortex, upper limb area (MOp-ul). Using genetic and viral labelling, barcoded anatomy resolved by sequencing, single-neuron reconstruction, whole-brain imaging and cloud-based neuroinformatics tools, we delineated the MOp-ul in 3D and refined its sublaminar organization. We defined around two dozen projection neuron types in the MOp-ul and derived an input-output wiring diagram, which will facilitate future analyses of motor control circuitry across molecular, cellular and system levels. This work provides a roadmap towards a comprehensive cellular-resolution description of mammalian brain architecture
- …