12 research outputs found

    Anomalous stopping of laser-accelerated intense proton beam in dense ionized matter

    Full text link
    Ultrahigh-intensity lasers (1018^{18}-1022^{22}W/cm2^{2}) have opened up new perspectives in many fields of research and application [1-5]. By irradiating a thin foil, an ultrahigh accelerating field (1012^{12} V/m) can be formed and multi-MeV ions with unprecedentedly high intensity (1010^{10}A/cm2^2) in short time scale (\simps) are produced [6-14]. Such beams provide new options in radiography [15], high-yield neutron sources [16], high-energy-density-matter generation [17], and ion fast ignition [18,19]. An accurate understanding of the nonlinear behavior of beam transport in matter is crucial for all these applications. We report here the first experimental evidence of anomalous stopping of a laser-generated high-current proton beam in well-characterized dense ionized matter. The observed stopping power is one order of magnitude higher than single-particle slowing-down theory predictions. We attribute this phenomenon to collective effects where the intense beam drives an decelerating electric field approaching 1GV/m in the dense ionized matter. This finding will have considerable impact on the future path to inertial fusion energy.Comment: 8 pages, 4 figure

    Energy loss enhancement of very intense proton beams in dense matter due to the beam-density effect

    Full text link
    Thoroughly understanding the transport and energy loss of intense ion beams in dense matter is essential for high-energy-density physics and inertial confinement fusion. Here, we report a stopping power experiment with a high-intensity laser-driven proton beam in cold, dense matter. The measured energy loss is one order of magnitude higher than the expectation of individual particle stopping models. We attribute this finding to the proximity of beam ions to each other, which is usually insignificant for relatively-low-current beams from classical accelerators. The ionization of the cold target by the intense ion beam is important for the stopping power calculation and has been considered using proper ionization cross section data. Final theoretical values agree well with the experimental results. Additionally, we extend the stopping power calculation for intense ion beams to plasma scenario based on Ohm's law. Both the proximity- and the Ohmic effect can enhance the energy loss of intense beams in dense matter, which are also summarized as the beam-density effect. This finding is useful for the stopping power estimation of intense beams and significant to fast ignition fusion driven by intense ion beams

    Target density effects on charge tansfer of laser-accelerated carbon ions in dense plasma

    Full text link
    We report on charge state measurements of laser-accelerated carbon ions in the energy range of several MeV penetrating a dense partially ionized plasma. The plasma was generated by irradiation of a foam target with laser-induced hohlraum radiation in the soft X-ray regime. We used the tri-cellulose acetate (C9_{9}H16_{16}O8_{8}) foam of 2 mg/cm3^{-3} density, and 11-mm interaction length as target material. This kind of plasma is advantageous for high-precision measurements, due to good uniformity and long lifetime compared to the ion pulse length and the interaction duration. The plasma parameters were diagnosed to be Te_{e}=17 eV and ne_{e}=4 ×\times 1020^{20} cm3^{-3}. The average charge states passing through the plasma were observed to be higher than those predicted by the commonly-used semiempirical formula. Through solving the rate equations, we attribute the enhancement to the target density effects which will increase the ionization rates on one hand and reduce the electron capture rates on the other hand. In previsous measurement with partially ionized plasma from gas discharge and z-pinch to laser direct irradiation, no target density effects were ever demonstrated. For the first time, we were able to experimentally prove that target density effects start to play a significant role in plasma near the critical density of Nd-Glass laser radiation. The finding is important for heavy ion beam driven high energy density physics and fast ignitions.Comment: 7 pages, 4 figures, 35 conference

    Collision strengths for transitions of Ni XXI

    No full text
    In this paper, we use Dirac R-matrix theory to calculate the collision strengths for electron impact excitation of Ni XXI with the Dirac atomic R-matrix code (DARC), which includes contributions of resonances, channel coupling, and relativity. A DARC calculation has been performed for transitions among 86 levels of (1s2) 2s22p4, 2s2p5, 2p6 and 2s22p33l (l = 0, 1, 2) configurations of Ni XXI. The GRASP code has been adopted for the description of target. A comparison is made with the results of Bhatia et al. for the collision strengths of five incident energies, 85, 170, 255, 340, and 425 Ryd, which use distorted wave calculations that do not include channel coupling. Effective collision strengths are calculated by averaging collision strengths over a Maxwellian velocity distribution. The accuracy of our calculations is assessed

    Relativistic R-matrix studies of photoionisation processes of Sc

    No full text
    The photoionisation processes of the ground state and two metastable states of Sc2+ are investigated by Dirac R-matrix theory, where the comparison of photoionisation cross sections are made between our results and other experimental and theoretical values. The photoionisation cross sections of Sc2+ induced by different transitions are also given and the contribution of the different partial wave for the photoionisation cross section of Sc2+ is discussed. The eigenphase sum which reflects resonance behavior is calculated. The resonance energies obtained coincide well with the theoretical and experimental data. It is worth noting that the relativistic effects should be taken into account for the photoionisation processes

    Visualization 1: Negative refraction in molybdenum disulfide

    No full text
    Refraction angle as a function of incident angle Originally published in Optics Express on 24 August 2015 (oe-23-17-22024

    Enhanced Thomson scattering x-ray sources with flying focus laser pulse

    No full text
    X-ray source based on the Thomson scattering of laser interacting with energetic electron beams features high photon energy, small spot size, and good collimation. However, the photon number is insufficient for practical application because of the small cross section of the Thomson scattering. To solve this problem, here, we replace a traditional Gaussian laser pulse with a flying focus laser pulse to extend interaction length and restrain nonlinear effects. Simulation results show that the scattered photon number can be increased by about 25 and 2 times for high and low energy lasers, respectively. In particular, a 1010 photon number can be generated with a 10 J flying focus laser pulse, and the energy spread can also be greatly reduced for high energy laser, from a broad spectrum to a monoenergetic peak. Combining these two advantages, the peak spectrum brightness of x ray is 3 × 108 photons/keV at 240 keV, which is about three orders of magnitude more than the traditional case
    corecore