5 research outputs found

    Effects of the particle of ground alfalfa hay on the growth performance, methane production and archaeal populations of rabbits

    Get PDF
    Publication history: Accepted - 20 August 2018; Published online - 17 September 2018.The world's annual output of rabbits is over 1.2 billion, therefore this sector is also one of the sources of greenhouse gases in livestock production. One hundred-twenty New Zealand rabbits were allocated into four treatments, five replicates in each treatment and six rabbits in each replicate to examine the effect of grinding alfalfa hay to different sizes on growth performance, methane production and cecal archaeal populations. The particle sizes of the alfalfa meal in the four treatment diets were 2500, 1000, 100 and 10 μm, while the other ingredients were ground through a 2.5 mm sieve. The average daily gain (ADG) and average daily feed intake (ADFI) increased (P<0.001) as the particle size decreased, but the feed conversion ratio (FCR) was not affected (P = 0.305). The digestibility of neutral detergent fiber (NDF) (P = 0.006) and acid detergent fiber (ADF) (P<0.006) increased while the greatest digestibility of crude protein (CP) was obtained in 1000 um group (P = 0.015). The rabbits produced more methane (CH4, L/kgBM0.75/d) with decreasing alfalfa particle size (P<0.001). The molar proportion of acetic acid and propionic acid decreased (P<0.001) at the cost of butyric acid (P<0.001). The greatest villus height:crypt depth ratio were obtained in 1000 μm group, and the decrease in the alfalfa hay particle size decreased the jejunum and ilem villus height:crypt depth ratio (P<0.05). The gastric muscular and mucosal thickness decreased with decreasing alfalfa particle size (P<0.05). Archaea diversity decreased with decreasing alfalfa particle size, and the relative abundance of genus Methanobrevibacter increased (P<0.001) while the genus Methanosphaera decreased (P<0.001). It is concluded that a finer particle size favors the growth of genus Methanobrevibacter, which produces more methane but promotes the growth performance of rabbits.The financial support was provided by the International Cooperation Project of Ministry of Science and Technology of China (2014DFA32860), http://www.most.gov.cn/eng/. LZ Wang received the funding. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript

    Co-occurrence of 3 different resistance plasmids in a multi-drug resistant Cronobacter sakazakii isolate causing neonatal infections

    No full text
    Cronobacter sakazakii 505108 was isolated from a sputum specimen of a neonate with severe pneumonia. C. sakazakii 505108 co-harbors 3 resistance plasmids of the IncHI2, IncX3, and IncFIB incomparability groups, respectively. These 3 plasmids have acquired several accessory modules, which carry an extremely large number of resistance genes, especially including those involved in resistance to carbapenems, aminoglycoside, tetracyclines, and phenicols and sulphonamide/trimethoprim. These plasmid-borne antibiotic resistance genes were associated with insertion sequences, integrons, and transposons, indicating that the assembly and mobilization of the corresponding accessory modules with complex chimera structures are facilitated by transposition and/or homologous recombination. This is the first report of fully sequence plasmids in clinical Cronobacter, which provides a deeper insight into plasmid-mediated multi-drug resistance in Cronobacter from hospital settings
    corecore