271 research outputs found

    Rational protein design for enhancing thermal stability of industrial enzymes

    Get PDF
    Enzymes possessing many excellent properties such as high selectivity, consuming less energy, and producing less side products or waste have been widely applied as biocatalysts in pharmaceutical production and many industries such as biofuel, biomaterials, biosensor, food, and environmental treatment. Although enzymes have shown its potential as biocatalysts for many industrial applications, natural enzymes were not originated for manufacturing process which requires harsh reaction conditions such as high temperature, alkaline pH, and organics solvents. It was reported that reduction of final conversion of several enzymatic reactions was declined at high temperature. Protein engineering to improve the enzymes’ thermostability is crucial to extend the use of the industrial enzymes and maximize effectiveness of the enzyme-based procesess. Various industrial enzymes with improved thermostability were produced through rational protein engineering using different strategies. This review is not aimed to cover all successful rational protein engineering studies. The review focuses on some effective strategies which have widely used to increase the thermostability of several industrial enzymes through introduction of disulfide bonds and introduction of proline

    Effect of Spontaneous Polarization Charges on the Electron Mobility in ZnO Surface Quantum Wells

    Get PDF
    We present a theoretical study of the effect due to spontaneous polarization of ZnO on the low-temperature mobility of the two-dimensional electron gas (2DEG) in a ZnO surface quantum well (SFQW). We proved that for the O-polar face this causes an attraction of electrons by the positive charges bound on the surface, while for the Zn-polar face a repulsion of them far away therefrom by the negative bound charges of the same magnitude. Accordingly, surface roughness scattering is drastically enhanced in the former case, but reduced in the latter one. Therefore, the low-% temperature 2DEG mobility in ZnO SFQWs with O-polar face is found to be dominated by surface roughness. Our theory was illustrated for the sample prepared by bombardment of the O-polar face by 100-eV hydrogen ions. The surface roughness scattering enables an explanation of the 2DEG mobility, especially, the reason of low values for the mobility in the dependence from the carrier density which has not been understood when starting from impurity scattering

    HYCEDIS: HYbrid Confidence Engine for Deep Document Intelligence System

    Full text link
    Measuring the confidence of AI models is critical for safely deploying AI in real-world industrial systems. One important application of confidence measurement is information extraction from scanned documents. However, there exists no solution to provide reliable confidence score for current state-of-the-art deep-learning-based information extractors. In this paper, we propose a complete and novel architecture to measure confidence of current deep learning models in document information extraction task. Our architecture consists of a Multi-modal Conformal Predictor and a Variational Cluster-oriented Anomaly Detector, trained to faithfully estimate its confidence on its outputs without the need of host models modification. We evaluate our architecture on real-wold datasets, not only outperforming competing confidence estimators by a huge margin but also demonstrating generalization ability to out-of-distribution data.Comment: Document Intelligence @ KDD 2021 Worksho

    Design a cryptosystem using elliptic curves cryptography and Vigenère symmetry key

    Get PDF
    In this paper describes the basic idea of elliptic curve cryptography (ECC) as well as Vigenère symmetry key. Elliptic curve arithmetic can be used to develop elliptic curve coding schemes, including key exchange, encryption, and digital signature. The main attraction of elliptic curve cryptography compared to Rivest, Shamir, Adleman (RSA) is that it provides equivalent security for a smaller key size, which reduces processing costs. From the theorical basic, we proposed a cryptosystem using elliptic curves and Vigenère cryptography. We proposed and implemented our encryption algorithm in an integrated development environment named visual studio 2019 to design a safe, secure, and effective cryptosystem
    • …
    corecore