42 research outputs found

    Transesterification Kinetics of Jatropha Methyl Ester and Trimethylol propane for Biolubricant Synthesis Using Paphiaundulata Shell Waste

    Get PDF
    Indium tin oxide (ITO) thin films of 150 nm thickness were deposited on quartz glass substrates by RF sputtering technique, followed by thermal annealing treatment. In this technique, the samples have been annealed at different temperature, 300ᴼC, 400ᴼC, 500ᴼC respectively in Argon gas flow. Structural and surface morphological properties were analyzed by X-ray diffraction (XRD) and Atomic Force Microscopy (AFM) after annealing. The XRD showed a polycrystalline structure of ITO film with maximum peak intensity at 2θ= 30.54, orientation without any change in the cubic structure. Continuous and homogeneous films obtained by the AFM after annealing treatment. The visible spectrum from the spectrophotometer showed high transparency between 81% and 95% in the. Increasing the annealing temperature yields evenly distributed pyramidal peaks shaped particles with low roughness. Resistance of ITO thin film was significantly improved from 8.75 kΩ to 1.96 kΩ after 10 minute from 300ᴼC to 500ᴼC annealing temperatures respectively under Argon gas flow. ITO films physical properties would be well improved by this method which is highly suitable for cost effective photonic devices

    Radical nerve dissection for the carcinoma of head of pancreas: report of 30 cases

    No full text

    Invariant Natural Killer T Cells Ameliorate Monosodium Urate Crystal-Induced Gouty Inflammation in Mice

    No full text
    Gout is an inflammatory arthritis caused by deposition of intra-articular monosodium urate (MSU) crystal. Previous studies have focused on resident macrophage, infiltrating monocyte, and neutrophil responses to MSU crystal; yet the mechanisms of cellular changes and the potential involvement of other regulatory immune cells remain largely unknown. Invariant natural killer T (iNKT) cells, an innate type of T cell, are involved in the development of various inflammatory diseases. Here, we investigate the role of iNKT cells in MSU crystal-induced gouty inflammation. MSU crystal-induced inflammatory profiles in an air-pouch model were examined in iNKT-deficient CD1d knockout (KO) and wild-type (WT) control mice. To explore potential mechanisms of iNKT cell regulation of gouty inflammation, we cocultured CD4+ or CD4−iNKT cells with bone marrow-derived macrophages (BMDMs). We found that iNKT cells quickly migrated to the site of inflammation upon MSU crystal stimulation in WT mice. The total number of infiltrating cells in CD1d KO mice, especially neutrophils, was dramatically increased at 6 and 12 h (P < 0.01) post-MSU crystal challenge, compared with WT controls. BMDMs cocultured with CD4+iNKT cells produced less tumor necrosis factor-α and expressed higher levels of M2 macrophage markers, including Clec7a, Pdcd1Ig2, and interleukin-4 (P < 0.01), compared with BMDMs cocultured with CD4−iNKT cells or conventional CD4+ T cells. CD4+iNKT cells are one of the key regulators of MSU crystal-induced gouty inflammation through the control of macrophage polarization. iNKT cells may serve as a new therapeutic target for gout

    Correction to: miR-155 is dispensable in monosodium urate-induced gouty inflammation in mice

    No full text
    Unfortunately, after publication of this article [1], it was noticed that 2 authors were erroneously mentioned as co-first authors

    miR-155 is dispensable in monosodium urate-induced gouty inflammation in mice

    No full text
    Abstract Background The findings of a previous study by Jin et al. have shown that microRNA (miR)-155 was upregulated in patients with acute gouty arthritis and enhanced the proinflammatory cytokines. There is no direct evidence to support that miR-155 is indeed involved in monosodium urate (MSU)-induced inflammatory responses in vivo. The aim of this study was to investigate the role of miR-155 knock-out (KO) or knock-in (KI) mice in MSU-induced animal models to mimic acute gout. Methods MiR-155 expression in cultured bone marrow-derived macrophages (BMDMs) from miR-155 KO, miR-155 KI, and wild-type (WT) mice treated with MSU crystals in vitro was detected by real-time quantitative polymerase chain reaction (qPCR). MiR-155 KO and WT mice were used to induce an acute gouty inflammatory response with MSU crystals including models of foot pad inflammation, ankle arthritis, air pouch inflammation, and peritonitis. Furthermore, the proinflammatory interleukin (IL)-1β levels in lavage fluids from air pouch and peritoneal cavity models were measured by enzyme-linked immunosorbent assay (ELISA), and tumor necrosis factor (TNF)-α production from BMDMs of miR-155 KI mice treated with MSU were measured by flow cytometry. Results MiR-155 expression was quickly upregulated in BMDMs from WT mice following MSU treatment in vitro. In comparison with WT mice in vivo, the swelling index of miR-155 KO mice showed no significant difference in the murine foot pad and ankle arthritis models for the indicated different time points. There were similar changes in total cell numbers of lavage fluids in the air pouch and peritoneal cavity models between miR-155 KO and WT mice following MSU crystal injection. Moreover, the IL-1β levels of lavage fluids in the air pouch and peritonitis models from miR-155 KO mice were almost the same as those from WT mice. TNF-α levels were comparable from BMDMs treated with MSU crystals in vitro between miR-155 KI mice and WT mice. Conclusions MiR-155 is dispensable in MSU-induced gouty inflammation in mice. Deletion of miR-155 might not be an effective therapeutic approach to relieve the inflammation in acute gout

    Correction to: miR-155 is dispensable in monosodium urate-induced gouty inflammation in mice

    No full text
    Unfortunately, after publication of this article [1], it was noticed that 2 authors were erroneously mentioned as co-first authors

    miR-155 is dispensable in monosodium urate-induced gouty inflammation in mice

    No full text
    BACKGROUND: The findings of a previous study by Jin et al. have shown that microRNA (miR)-155 was upregulated in patients with acute gouty arthritis and enhanced the proinflammatory cytokines. There is no direct evidence to support that miR-155 is indeed involved in monosodium urate (MSU)-induced inflammatory responses in vivo. The aim of this study was to investigate the role of miR-155 knock-out (KO) or knock-in (KI) mice in MSU-induced animal models to mimic acute gout. METHODS: MiR-155 expression in cultured bone marrow-derived macrophages (BMDMs) from miR-155 KO, miR-155 KI, and wild-type (WT) mice treated with MSU crystals in vitro was detected by real-time quantitative polymerase chain reaction (qPCR). MiR-155 KO and WT mice were used to induce an acute gouty inflammatory response with MSU crystals including models of foot pad inflammation, ankle arthritis, air pouch inflammation, and peritonitis. Furthermore, the proinflammatory interleukin (IL)-1β levels in lavage fluids from air pouch and peritoneal cavity models were measured by enzyme-linked immunosorbent assay (ELISA), and tumor necrosis factor (TNF)-α production from BMDMs of miR-155 KI mice treated with MSU were measured by flow cytometry. RESULTS: MiR-155 expression was quickly upregulated in BMDMs from WT mice following MSU treatment in vitro. In comparison with WT mice in vivo, the swelling index of miR-155 KO mice showed no significant difference in the murine foot pad and ankle arthritis models for the indicated different time points. There were similar changes in total cell numbers of lavage fluids in the air pouch and peritoneal cavity models between miR-155 KO and WT mice following MSU crystal injection. Moreover, the IL-1β levels of lavage fluids in the air pouch and peritonitis models from miR-155 KO mice were almost the same as those from WT mice. TNF-α levels were comparable from BMDMs treated with MSU crystals in vitro between miR-155 KI mice and WT mice. CONCLUSIONS: MiR-155 is dispensable in MSU-induced gouty inflammation in mice. Deletion of miR-155 might not be an effective therapeutic approach to relieve the inflammation in acute gout
    corecore