1,317 research outputs found

    Optimal Management of DC Pension Plan with Inflation Risk and Tail VaR Constraint

    Full text link
    This paper investigates an optimal investment problem under the tail Value at Risk (tail VaR, also known as expected shortfall, conditional VaR, average VaR) and portfolio insurance constraints confronted by a defined-contribution pension member. The member's aim is to maximize the expected utility from the terminal wealth exceeding the minimum guarantee by investing his wealth in a cash bond, an inflation-linked bond and a stock. Due to the presence of the tail VaR constraint, the problem cannot be tackled by standard control tools. We apply the Lagrange method along with quantile optimization techniques to solve the problem. Through delicate analysis, the optimal investment output in closed-form and optimal investment strategy are derived. A numerical analysis is also provided to show how the constraints impact the optimal investment output and strategy

    Identification and characterization of microRNAs in Clonorchis sinensis of human health significance

    Get PDF
    <p>Abstract</p> <p>Background</p> <p><it>Clonorchis sinensis </it>is a zoonotic parasite causing clonorchiasis-associated human disease such as biliary calculi, cholecystitis, liver cirrhosis, and it is currently classified as carcinogenic to humans for cholangiocarcinoma. MicroRNAs (miRNAs) are non-coding, regulating small RNA molecules which are essential for the complex life cycles of parasites and are involved in parasitic infections. To identify and characterize miRNAs expressed in adult <it>C. sinensis </it>residing chronically in the biliary tract, we developed an integrative approach combining deep sequencing and bioinformatic predictions with stem-loop real-time PCR analysis.</p> <p>Results</p> <p>Here we report the use of this approach to identify and clone 6 new and 62,512 conserved <it>C. sinensis </it>miRNAs which belonged to 284 families. There was strong bias on families, family members and sequence nucleotides in <it>C. sinensis</it>. Uracil was the dominant nucleotide, particularly at positions 1, 14 and 22, which were located approximately at the beginning, middle and end of conserved miRNAs. There was no significant "seed region" at the first and ninth positions which were commonly found in human, animals and plants. Categorization of conserved miRNAs indicated that miRNAs of <it>C. sinensis </it>were still innovated and concentrated along three branches of the phylogenetic tree leading to bilaterians, insects and coelomates. There were two miRNA strategies in <it>C. sinensis </it>for its parasitic life: keeping a large category of miRNA families of different animals and keeping stringent conserved seed regions with high active innovation in other places of miRNAs mainly in the middle and the end, which were perfect for the parasite to perform its complex life style and for host changes.</p> <p>Conclusions</p> <p>The present study represented the first large scale characterization of <it>C. sinensis </it>miRNAs, which have implications for understanding the complex biology of this zoonotic parasite, as well as miRNA studies of other related species such as <it>Opisthorchis viverrini </it>and <it>Opisthorchis felineus </it>of human and animal health significance.</p

    Changes in the proteomic profiles of mouse brain after infection with cyst-forming Toxoplasma gondii

    Get PDF
    Background Toxoplasma gondii is an opportunistic pathogenic protozoan parasite, which infects approximately one third of the human population worldwide, causing opportunistic zoonotic toxoplasmosis. The predilection of T. gondii for the central nervous system (CNS) causes behavioral disorders and fatal necrotizing encephalitis and thus constitutes a major threat especially to AIDS patients. Methods In the present study, we explored the proteomic profiles of brain tissues of the specific pathogen-free (SPF) Kunming mice at 7 d, 14 d and 21 d after infection with cysts of the Toxoplasma gondii Prugniaud (PRU) strain (Genotype II), by two-dimensional gel electrophoresis (2-DE) combined with MALDI-TOF/TOF tandem mass spectrometry (MS/MS). Results A total of 60 differentially expressed protein spots were selected. Fifty-six spots were successfully identified, which corresponded to 45 proteins of the mouse. Functional analysis using a Gene Ontology database showed that these proteins were mainly involved in metabolism, cell structure, signal transduction and immune responses, and will be beneficial for the understanding of molecular mechanisms of T. gondii pathogenesis. Conclusions This study identified some mouse brain proteins involved in the response with cyst-forming T. gondii PRU strain. These results provided an insight into the responsive relationship between T. gondii and the host brain tissues, which will shed light on our understanding of the mechanisms of pathogenesis in toxoplasmic encephalitis, and facilitate the discovery of new methods of diagnosis, prevention, control and treatment of toxoplasmic encephalopathy

    1-(2-Fluoro­benzyl­ideneamino)pyridinium bis­(1,2-dicyano­ethene-1,2-dithiol­ato)nickelate(II)

    Get PDF
    In the title complex, (C12H10FN2)2[Ni(C4N2S2)2], the anion lies on an inversion center with the NiII ion coordinated by four S atoms in a slightly distorted square-planar environment. In the unique cation, the dihedral angle between the benzene and pyridine rings is 7.1 (2) Å

    DCAF26, an Adaptor Protein of Cul4-Based E3, Is Essential for DNA Methylation in Neurospora crassa

    Get PDF
    DNA methylation is involved in gene silencing and genome stability in organisms from fungi to mammals. Genetic studies in Neurospora crassa previously showed that the CUL4-DDB1 E3 ubiquitin ligase regulates DNA methylation via histone H3K9 trimethylation. However, the substrate-specific adaptors of this ligase that are involved in the process were not known. Here, we show that, among the 16 DDB1- and Cul4-associated factors (DCAFs) encoded in the N. crassa genome, three interacted strongly with CUL4-DDB1 complexes. DNA methylation analyses of dcaf knockout mutants revealed that dcaf26 was required for all of the DNA methylation that we observed. In addition, histone H3K9 trimethylation was also eliminated in dcaf26KO mutants. Based on the finding that DCAF26 associates with DDB1 and the histone methyltransferase DIM-5, we propose that DCAF26 protein is the major adaptor subunit of the Cul4-DDB1-DCAF26 complex, which recruits DIM-5 to DNA regions to initiate H3K9 trimethylation and DNA methylation in N. crassa

    12-Nitro­methyl-14-deoxy­andro­graph­olide

    Get PDF
    In the mol­ecule of the title compound {systematic name: 3-[2-(6-hydr­oxy-5-hydroxy­methyl-5,8a-dimethyl-2-methyl­ene­per­hydro-1-napth­yl)-1-(nitro­meth­yl)eth­yl]-2(4H)-furan­one}, C21H31NO6, the cyclo­hexane rings have chair conformations. Intra­molecular O—H⋯O hydrogen bonding results in the formation of a six-membered non-planar ring with a twist conformation. In the crystal structure, inter­molecular O—H⋯O hydrogen bonds link the mol­ecules into infinite chains along the c axis
    • …
    corecore