1,676 research outputs found

    An Efficient Approach for Polyps Detection in Endoscopic Videos Based on Faster R-CNN

    Full text link
    Polyp has long been considered as one of the major etiologies to colorectal cancer which is a fatal disease around the world, thus early detection and recognition of polyps plays a crucial role in clinical routines. Accurate diagnoses of polyps through endoscopes operated by physicians becomes a challenging task not only due to the varying expertise of physicians, but also the inherent nature of endoscopic inspections. To facilitate this process, computer-aid techniques that emphasize fully-conventional image processing and novel machine learning enhanced approaches have been dedicatedly designed for polyp detection in endoscopic videos or images. Among all proposed algorithms, deep learning based methods take the lead in terms of multiple metrics in evolutions for algorithmic performance. In this work, a highly effective model, namely the faster region-based convolutional neural network (Faster R-CNN) is implemented for polyp detection. In comparison with the reported results of the state-of-the-art approaches on polyps detection, extensive experiments demonstrate that the Faster R-CNN achieves very competing results, and it is an efficient approach for clinical practice.Comment: 6 pages, 10 figures,2018 International Conference on Pattern Recognitio

    A note on Maxwell's equal area law for black hole phase transition

    Get PDF
    The state equation of the charged AdS black hole is reviewed in the TrT-r plane. Thinking of the phase transition, the TST-S, PVP-V, PνP-\nu graphs are plotted and then the equal area law is used in the three cases to get the phase transition point (P,T). The analytical phase transition point relations for P-T of charged AdS black hole has been obtained successfully. By comparing the three results, we find that the equal area law possibly cannot be used directly for PνP-\nu plane. According to the TST-S, PVP-V results, we plot the PTQP-T-Q graph and find that for a highly charged black hole a very low temperature condition is required for the phase transition

    Attractive Interaction between Vortex and Anti-vortex in Holographic Superfluid

    Full text link
    Annihilation process of a pair of vortices in holographic superfluid is numerically simulated. The process is found to consist of two stages which are amazingly separated by vortex size 2r2r. The separation distance δ(t)\delta(t) between vortex and anti-vortex as a function of time is well fitted by α(t0t)n\alpha (t_{0}-t)^{n}, where the scaling exponent n=1/2n=1/2 for δ(t)>2r\delta (t)>2r, and n=2/5n=2/5 for δ(t)<2r\delta(t)<2r. Then the approaching velocity and acceleration as functions of time and as functions of separation distance are obtained. Thus the attractive force between vortex and anti-vortex is derived as f(δ)1/δ3f(\delta)\propto 1/\delta^{3} for the first stage, and f(δ)1/δ4f(\delta)\propto 1/\delta^{4} for the second stage. In the end, we explained why the annihilation rate of vortices in turbulent superfluid system obeys the two-body decay law when the vortex density is low.Comment: 14 pages, 5 figure

    A New Phase Transition Related to the Black Hole's Topological Charge

    Full text link
    The topological charge ϵ\epsilon of AdS black hole is introduced in Ref.[1,2], where a complete thermodynamic first law is obtained. In this paper, we investigate a new phase transition related to the topological charge in Einstein-Maxwell theory. Firstly, we derive the explicit solutions corresponding to the divergence of specific heat CϵC_{\epsilon} and determine the phase transition critical point. Secondly, the TrT-r curve and TST-S curve are investigated and they exhibit an interesting van der Waals system's behavior. Critical physical quantities are also obtained which are consistent with those derived from the specific heat analysis. Thirdly, a van der Waals system's swallow tail behavior is observed when ϵ>ϵc\epsilon>\epsilon_{c} in the FTF-T graph. What's more, the analytic phase transition coexistence lines are obtained by using the Maxwell equal area law and free energy analysis, the results of which are consistent with each other.Comment: 11 pages, 5 figure

    Comparison and analysis of flux-switching permanent-magnet double-rotor machine with 4QT used for HEV

    Get PDF
    This journal issue contains selected papers from the 2014 IEEE International Magnetics (INTERMAG) ConferenceCQ - Motors, generators and actuators VIpublished_or_final_versio

    Phase transition and heat engine efficiency of phantom AdS black holes

    Full text link
    Phase transition and heat engine efficiency of phantom AdS black holes are investigated with peculiar properties found. In the non-extended phase space, we probe the possibility of TST-S criticality in both the canonical ensemble and grand-canonical ensemble. It is shown that no TST-S criticality exists for the phantom AdS black hole in the canonical ensemble, which is different from the RN-AdS black hole. Contrary to the canonical ensemble, no critical point can be found for neither phantom AdS black holes nor RN-AdS black hole in the grand-canonical ensemble. Moreover, we study the specific heat at constant electric potential. When the electric potential satisfies A0>1A_0>1, only phantom AdS black holes undergo phase transition in the grand-canonical ensemble. In the extended phase space, we show that there is no PVP-V criticality for phantom AdS black holes, contrary to the case of the RN-AdS black hole. Furthermore, we define a new kind of heat engine via phantom AdS black holes. Comparing to RN-AdS black holes, phantom AdS black holes have a lower heat engine efficiency. However, the ratio η/ηC\eta/\eta_C of phantom AdS black hole is higher, thus increasing the possibility of approaching the Carnot limit. This observation is obviously of interest. The interesting results obtained in this paper may be attributed to the existence of phantom field whose energy density is negative.Comment: 9pages,4figures. Comments welcom

    Different atmospheric moisture divergence responses to extreme and moderate El Niños

    Get PDF
    On seasonal and inter-annual time scales, vertically integrated moisture divergence provides a useful measure of the tropical atmospheric hydrological cycle. It reflects the combined dynamical and thermodynamical effects, and is not subject to the limitations that afflict observations of evaporation minus precipitation. An empirical orthogonal function (EOF) analysis of the tropical Pacific moisture divergence fields calculated from the ERA-Interim reanalysis reveals the dominant effects of the El Niño-Southern Oscillation (ENSO) on inter-annual time scales. Two EOFs are necessary to capture the ENSO signature, and regression relationships between their Principal Components and indices of equatorial Pacific sea surface temperature (SST) demonstrate that the transition from strong La Niña through to extreme El Niño events is not a linear one. The largest deviation from linearity is for the strongest El Niños, and we interpret that this arises at least partly because the EOF analysis cannot easily separate different patterns of responses that are not orthogonal to each other. To overcome the orthogonality constraints, a self-organizing map (SOM) analysis of the same moisture divergence fields was performed. The SOM analysis captures the range of responses to ENSO, including the distinction between the moderate and strong El Niños identified by the EOF analysis. The work demonstrates the potential for the application of SOM to large scale climatic analysis, by virtue of its easier interpretation, relaxation of orthogonality constraints and its versatility for serving as an alternative classification method. Both the EOF and SOM analyses suggest a classification of “moderate” and “extreme” El Niños by their differences in the magnitudes of the hydrological cycle responses, spatial patterns and evolutionary paths. Classification from the moisture divergence point of view shows consistency with results based on other physical variables such as SST
    corecore