60 research outputs found

    Upconversion NIR-II fluorophores for mitochondria-targeted cancer imaging and photothermal therapy

    Get PDF
    Acknowledgements: The work was supported by the National Key R&D Program of China (2020YFA0908800), NSFC (81773674, 81573383), Shenzhen Science and Technology Research Grant (JCYJ20190808152019182), Hubei Province Scientific and Technical Innovation Key Project, National Natural Science Foundation of Hubei Province (2017CFA024, 2017CFB711), the Applied Basic Research Program of Wuhan Municipal Bureau of Science and Technology (2019020701011429), Tibet Autonomous Region Science and Technology Plan Project Key Project (XZ201901-GB-11), the Local Development Funds of Science and Technology Department of Tibet (XZ202001YD0028C), Project First-Class Disciplines Development Supported by Chengdu University of Traditional Chinese Medicine (CZYJC1903), Health Commission of Hubei Province Scientific Research Project (WJ2019M177, WJ2019M178), the China Scholarship Council, and the Fundamental Research Funds for the Central Universities.Peer reviewedPublisher PD

    Rapid and Reusable Detection of Interferon-Gamma Based on Label-Free Single-Stranded DNA and Thioflavin T

    No full text

    Recent progress in hyperbranched polymers

    No full text

    Quasi-dendritic sulfonate-based organic small molecule for high-quality NIR-II bone-targeted imaging

    No full text
    Abstract The visualization of bone imaging in vivo is of great significance for the understanding of some bone-related diseases or physiological processes. Herein, a bone-targeted NIR-II small molecule (TTQF-SO3), which was modified with multiple sulfonate groups, was successfully fabricated for the second near-infrared (NIR-II) bone imaging. In vitro studies revealed that TTQF-SO3 showed high affinity for hydroxyapatite and excellent macrophage accumulation ability. In in vivo assays, TTQF-SO3 displayed high bone uptake ability and high NIR-II bone imaging quality, demonstrating the specific bone-targeting ability of the sulfonate-containing probe. In addition, the noninvasive NIR-II imaging detection in bone calcium loss was successfully verified in osteoporosis mice models. Moreover, the negative charge characteristic of TTQF-SO3 showed efficient lymphoid enrichment in living mice by intravenous injection. Overall, these warrant that our TTQF-SO3 is an optimal bone-targeted diagnostic agent for high-quality NIR-II imaging, highlighting its potential promise for clinical translation. Graphical Abstrac

    Renal-clearable molecular semiconductor for second near-infrared fluorescence imaging of kidney dysfunction

    No full text
    Real-time imaging of kidney function is important to assess the nephrotoxicity of drugs and monitor the progression of renal diseases; however, it remains challenging because of the lack of optical agents with high renal clearance and high signal-tobackground ratio (SBR). Herein, a second near-infrared (NIR-II) fluorescent molecular semiconductor (CDIR2) is synthesized for realtime imaging of kidney dysfunction in living mice. CDIR2 not only has a high renal clearance efficiency (~90% injection dosage at 24 h postinjection), but also solely undergoes glomerular filtration into urine without being reabsorbed and secreted in renal tubules. Such a unidirectional renal clearance pathway of CDIR2 permits real-time monitoring of kidney dysfunction in living mice upon nephrotoxic exposure. Thus, this study not only introduces a molecular renal probe but also provides useful molecular guidelines to increase the renal clearance efficiency of NIR-II fluorescent agents.MOE (Min. of Education, S’pore)Accepted versio
    corecore