228 research outputs found
The TOC-Based Algorithm for Solving Multiple Constraint Resources: a Re-examination
published_or_final_versio
Computational fluid dynamics study of bifurcation aneurysms treated with pipeline embolization device: side branch diameter study
An intracranial aneurysm, abnormal swelling of the cerebral artery, may lead to undesirable rates of mortality and morbidity upon rupture. Endovascular treatment involves the deployment of a flow-diverting stent that covers the aneurysm orifice, thereby reducing the blood flow into the aneurysm and mitigating the risk of rupture. In this study, computational fluid dynamics analysis is performed on a bifurcation model to investigate the change in hemodynamics with various side branch diameters. The condition after the deployment of a pipeline embolization device is also simulated. Hemodynamic factors such as flow velocity, pressure, and wall shear stress are studied. Aneurysms with a larger side branch vessel might have greater risk after treatment in terms of hemodynamics. Although a stent could lead to flow reduction entering the aneurysm, it would drastically alter the flow rate inside the side branch vessel. This may result in side-branch hypoperfusion subsequent to stenting. In addition, two patient-specific bifurcation aneurysms are tested, and the results show good agreement with the idealized models. Furthermore, the peripheral resistance of downstream vessels is investigated by varying the outlet pressure conditions. This quantitative analysis can assist in treatment planning and therapeutic decision-making.published_or_final_versio
Self-assembly of DNA nanogels with endogenous microRNA toehold self-regulating switches for targeted gene regulation therapy
Herein, a smart nanohydrogel with endogenous microRNA-21 toehold is developed to encapsulate gemcitabine-loaded mesoporous silica nanoparticles for targeted pancreatic cancer therapy. This toehold mediated strand displacement method can simultaneously achieve specific drug release and miRNA-21 silencing, resulting in the up-regulation of the expression of tumor suppressor genes PTEN and PDCD4
Multi-Directional Growth of Aligned Carbon Nanotubes Over Catalyst Film Prepared by Atomic Layer Deposition
The structure of vertically aligned carbon nanotubes (CNTs) severely depends on the properties of pre-prepared catalyst films. Aiming for the preparation of precisely controlled catalyst film, atomic layer deposition (ALD) was employed to deposit uniform Fe2O3 film for the growth of CNT arrays on planar substrate surfaces as well as the curved ones. Iron acetylacetonate and ozone were introduced into the reactor alternately as precursors to realize the formation of catalyst films. By varying the deposition cycles, uniform and smooth Fe2O3 catalyst films with different thicknesses were obtained on Si/SiO2 substrate, which supported the growth of highly oriented few-walled CNT arrays. Utilizing the advantage of ALD process in coating non-planar surfaces, uniform catalyst films can also be successfully deposited onto quartz fibers. Aligned few-walled CNTs can be grafted on the quartz fibers, and they self-organized into a leaf-shaped structure due to the curved surface morphology. The growth of aligned CNTs on non-planar surfaces holds promise in constructing hierarchical CNT architectures in future
Functional Expression of Spider Neurotoxic Peptide Huwentoxin-I in E. coli
The coding sequence of huwentoxin-I, a neurotoxic peptide isolated from the venom of the Chinese spider Ornithoctonus huwena, was amplified by PCR using the cDNA library constructed from the spider venom glands. The cloned fragment was inserted into the expression vector pET-40b and transformed into the E. coli strain BL21 (DE3). The expression of a soluble fusion protein, disulfide interchange protein (DsbC)-huwentoxin-I, was auto-induced in the periplasm of E. coli in the absence of IPTG. After partial purification using a Ni-NTA column, the expressed fusion protein was digested using enterokinase to release heteroexpressed huwentoxin-I and was further purified using RP-HPLC. The resulting peptide was subjected to gel electrophoresis and mass spectrometry analysis. The molecular weight of the heteroexpressed huwentoxin-I was 3750.69, which is identical to that of the natural form of the peptide isolated from spider venom. The physiological properties of the heteroexpressed huwentoxin-I were further analyzed using a whole-cell patch clamp assay. The heteroexpressed huwentoxin-I was able to block currents generated by human Nav1.7 at an IC50 of 640 nmole/L, similar to that of the natural huwentoxin-I, which is 630 nmole/L
Assessment of dietary intake among pregnant women in a rural area of western China
<p>Abstract</p> <p>Background</p> <p>Adequate maternal nutrient intake during pregnancy is important to ensure satisfactory birth outcomes. There are no data available on the usual dietary intake among pregnant women in rural China. The present study describes and evaluates the dietary intake in a cohort of pregnant women living in two counties of rural Shaanxi, western China.</p> <p>Methods</p> <p>1420 pregnant women were recruited from a trial that examined the effects of micronutrient supplementation on birth outcomes. Dietary information was collected at the end of their trimester or after delivery with an interviewed-administrated semi-quantitative food frequency questionnaire (FFQ). Nutrients intake was calculated from the FFQ and compared to the Estimated Average Requirements (EAR). The EAR cut-offs based on the Chinese Nutrition Society Dietary Reference Intakes (DRIs) were used to assess the prevalence of inadequate dietary intakes of energy, protein, calcium, zinc, riboflavin, vitamin C and folate. Mann-Whitney U and Kruskal Wallis tests were used to compare nutrient intakes across subgroups.</p> <p>Results</p> <p>The mean nutrient intakes assessed by the FFQ was similar to those reported in the 2002 Chinese National Nutrition and Health Survey from women living in rural areas except for low intakes of protein, fat, iron and zinc. Of the participants, 54% were at risk of inadequate intake of energy. There were high proportions of pregnant women who did not have adequate intakes of folate (97%) and zinc (91%). Using the "probability approach", 64% of subjects had an inadequate consumption of iron.</p> <p>Conclusion</p> <p>These results reveal that the majority of pregnant women in these two counties had low intakes of nutrients that are essential for pregnancy such as iron and folate.</p> <p>Trial registration</p> <p>ISRCTN08850194.</p
CD40 Is Essential in the Upregulation of TRAF Proteins and NF-KappaB-Dependent Proinflammatory Gene Expression after Arterial Injury
Despite extensive investigations, restenosis, which is characterized primarily by neointima formation, remains an unsolved clinical problem after vascular interventions. A recent study has shown that CD40 signaling through TNF receptor associated factor 6 (TRAF6) plays a key role in neointima formation after carotid artery injury; however, underlying mechanisms are not clearly elucidated. Because neointima formation may vary significantly depending on the type of injury, we first assessed the effect of CD40 deficiency on neointima formation in 2 injury models, carotid artery ligation and femoral artery denudation injury. Compared with wild-type mice, CD40 deficiency significantly reduced neointima formation and lumen stenosis in two different models. Further, we investigated the mechanism by which CD40 signaling affects neointima formation after arterial injury. In wild-type mice, the expression levels of CD40, several TRAF proteins, including TRAF1, TRAF2, TRAF3, TRAF5, and TRAF6, as well as total NF-kB p65 and phospho-NF-kB p65, in the carotid artery were markedly upregulated within 3–7 days after carotid ligation. Deficiency of CD40 abolished the injury-induced upregulation of TRAFs including TRAF6 and NF-kB-p65 in the injured vessel wall. Further, CD40−/− mice showed a significant decrease in the recruitment of neutrophils (at 3, 7d) and macrophages (at 7, 21d) into injured artery; this effect was most likely attributed to inhibition of NF-kB activation and marked downregulation of NF-kB-related gene expression, including cytokines (TNFα, IL-1β, IL-6), chemokines (MCP-1), and adhesion molecules (ICAM-1, VCAM-1). Moreover, neutrophil recruitment in a model of thioglycollate-induced peritonitis is impaired in CD40-deficient mice. In vitro data revealed that CD40 deficiency blocked CD40L-induced NF-kB p65 nuclear translocation in leukocytes. Altogether, our data identified for the first time that CD40 is essential in the upregulation of TRAF6, NF-kB activation, and NF-kB-dependent proinflammatory genes in vivo. Our findings firmly established the role for CD40 in neointima formation in 2 distinct injury models
Knocking-Down Cyclin A2 by siRNA Suppresses Apoptosis and Switches Differentiation Pathways in K562 Cells upon Administration with Doxorubicin
Cyclin A2 is critical for the initiation of DNA replication, transcription and cell cycle regulation. Cumulative evidences indicate that the deregulation of cyclin A2 is tightly linked to the chromosomal instability, neoplastic transformation and tumor proliferation. Here we report that treatment of chronic myelogenous leukaemia K562 cells with doxorubicin results in an accumulation of cyclin A2 and follows by induction of apoptotic cell death. To investigate the potential preclinical relevance, K562 cells were transiently transfected with the siRNA targeting cyclin A2 by functionalized single wall carbon nanotubes. Knocking down the expression of cyclin A2 in K562 cells suppressed doxorubicin-induced growth arrest and cell apoptosis. Upon administration with doxorubicin, K562 cells with reduced cyclin A2 showed a significant decrease in erythroid differentiation, and a small fraction of cells were differentiated along megakaryocytic and monocyte-macrophage pathways. The results demonstrate the pro-apoptotic role of cyclin A2 and suggest that cyclin A2 is a key regulator of cell differentiation. To the best of our knowledge, this is the first report that knocking down expression of one gene switches differentiation pathways of human myeloid leukemia K562 cells
- …