15 research outputs found

    Oxaliplatin use in pressurized intraperitoneal aerosol chemotherapy (PIPAC) is safe and effective: A multicenter study.

    Get PDF
    Pressurized intraperitoneal aerosol chemotherapy (PIPAC) is a new drug delivery method used in patients with peritoneal cancer (PC) of primary or secondary origin. Intraperitoneal use of oxaliplatin raises concerns about toxicity, especially abdominal pain. The objective of this study was to assess the tolerance of PIPAC with oxaliplatin (PIPAC-Ox) in a large cohort of patients and to identify the risk factors for high grade toxicity, discontinuation of treatment and impaired survival. This retrospective cohort study included all consecutive patients treated with PIPAC-Ox (92 mg/m <sup>2</sup> ) in five centers specialized in the treatment of PC. The procedure was repeated every 6 weeks. Outcomes of interest were Common Terminology Criteria for Adverse Events (CTCAE), symptoms and survival (Kaplan-Meier). Univariate risk factors were included in a multinominal regression model to control for bias. Overall, 251 PIPAC-Ox treatments were performed in 101 patients (45 female) having unresectable PC of various origins: 66 colorectal, 15 gastric, 5 ovarian, 3 mesothelioma, 2 pseudomyxoma, 10 other malignancies (biliary, pancreatic, endocrine) respectively. The median PCI was 19 (IQR: 10-28). Postoperative abdominal pain was present in 23 patients. Out of the 9 patients with grade 3 abdominal pain, only 3 needed a change of PIPAC drug. CTCAE 4.0 toxicity grade 4 or higher was encountered in 16(15.9%) patients. The patients had a mean of 2.5 procedures/patient (SD = 1.5). 50 subjects presented with symptom improvement. Oxaliplatin-based PIPAC appears to be a safe treatment that offers good symptom control and promising survival for patients with advanced peritoneal disease

    The Unique DNA Sequences Underlying Equine Centromeres

    No full text
    Centromeres are highly distinctive genetic loci whose function is specified largely by epigenetic mechanisms. Understanding the role of DNA sequences in centromere function has been a daunting task due to the highly repetitive nature of centromeres in animal chromosomes. The discovery of a centromere devoid of satellite DNA in the domestic horse consolidated observations on the epigenetic nature of centromere identity, showing that entirely natural chromosomes could function without satellite DNA cues. Horses belong to the genus Equus which exhibits a very high degree of evolutionary plasticity in centromere position and DNA sequence composition. Examination of horses has revealed that the position of the satellite-free centromere is variable among individuals. Analysis of centromere location and composition in other Equus species, including domestic donkey and zebras, confirms that the satellite-less configuration of centromeres is common in this group which has undergone particularly rapid karyotype evolution. These features have established the equids as a new mammalian system in which to investigate the molecular organization, dynamics and evolutionary behaviour of centromeres
    corecore