7,048 research outputs found

    Optimal electric bus fleet scheduling considering battery degradation and non-linear charging profile

    Get PDF
    This study aims to determine the battery electric bus service and charging strategy to minimize the total operational cost of transit system, where the cost incurred by battery degradation and non-linear charging profile is taken into account. We formulate a set partitioning model for this problem, subject to predefined trip schedule and limited charging facilities. A tailored branch-and-price approach is then proposed to find the global optimal solution. In particular, we develop an effective multi-label correcting method to deal with the pricing problem (i.e., generating columns) in column generation procedure within the branch-and-price framework, coupled with a dual stabilization technique with an aim to accelerate the convergence rate. Meanwhile, a branch-and-bound solution approach is adopted to guarantee optimal integer solutions. Numerical experiments and a case study arising from real transit network are conducted to further assess the efficiency and applicability of the proposed method. Our experiments confirm that, despite the complexity of the considered problem, optimal solution can still be generated within reasonable computational time using the proposed algorithm. The results also show considerable cost saving (about 10.1ā€“27.3% less) if this optimization model is implemented, mainly contributed by the substantial extension of battery life. A number of managerial insights stemmed from the numerical case study are outlined, which can help transit operators formulate more cost-efficient electric bus fleet scheduling plans

    Web based English-Chinese OOV term translation using Adaptive rules and Recursive feature selection

    Get PDF

    Chaos and multifold complexity for an inverted harmonic oscillator

    Full text link
    We examine the multifold complexity and Loschmidt echo for an inverted harmonic oscillator. We give analytic expressions for any number of precursors, implementing multiple backward and forward time evolutions of the quantum state, at the leading order in the perturbation. We prove that complexity is dominated by the longest permutation of the given time combination in an alternating ``zig-zag'' order, the exact same result obtained with holography. We conjecture that the general structure for multifold complexity should hold true universally for generic quantum systems, in the limit of a large number of precursors.Comment: 24 pages, 9 figure

    Fabrication and Mechanical Properties of Chitosan-Montmorillonite Nano-composite

    Get PDF
    Chitosan has found various applications in gastrointestinal stent, biomedical implants as well as an effective absorbent in waste water treatment. However, the material suffers from low strength and large shrinkage upon dehydration. The current project is aimed to develop a process to fabricate chitosan composites with the addition of functionalised montmorillonite nanoparticles and to examine the effect of ceramic content on the mechanical behavior of the composites. This paper describes the fabrication of chitosan with montmorrillonite composites and the mechanical testing of the samples and the mechanical behaviour of the composites, as well as the observations of the microstructure. The effects of composition and microstructure on the mechanical properties of the composite are investigated. The results indicate that the nanoparticles are dispersed uniformly in the matrix up to 40wt% using high speed homogeniser. The elastic modulus increases monotonically with the addition of nanoparticles, but the fracture strength drops due to the defects introduced by the nanoparticles.</jats:p

    Immunotherapy for Renal Cell Carcinoma

    Get PDF
    Despite the rapid development of therapeutic modalities for advanced or metastatic renal cell carcinoma (mRCC) over the past decade to include traditional immunotherapy, such as high-dose interleukin-2 and interferon-Ī±, as well as a number of targeted antiangiogenic therapies, mRCC continues to be associated with poor prognosis. Currently, immunotherapy has seen tremendous development in the form of immune checkpoint inhibition and vaccines at a dizzying pace, which are being studied in mRCC and are showing promise as important steps in the management of this disease. With so many drugs available to clinicians and patients, properly integrating immunotherapy especially immune checkpoint blockade (ICB) into the treatment paradigm is challenging. Emerging research with additional ICB agents and novel combination strategies is likely to further impact clinical decision-making. The further development of biomarkers for predicting a response is required to achieve optimal efficacy with these therapeutic interventions. This chapter summarizes the current landscape of standard and emerging immune therapeutics and other modalities for mRCC

    The JNK inhibitor SP600125 enhances dihydroartemisinin-induced apoptosis by accelerating Bax translocation into mitochondria in human lung adenocarcinoma cells

    Get PDF
    AbstractThe C-Jun N-terminal Kinase (JNK) inhibitor SP600125 is widely used to inhibit the JNK-mediated Bax activation and cell apoptosis. However, this report demonstrates that SP600125 synergistically enhances the dihydroartemisinin (DHA)-induced human lung adenocarcinoma cell apoptosis by accelerating Bax translocation and subsequent intrinsic apoptotic pathway involving mitochondrial membrane depolarization, cytochrome c release, caspase-9 and caspase-3 activation. The dynamical analysis of GFP-Bax mobility inside single living cells using fluorescence recovery after photobleaching revealed that SP600125 aggravated the DHA-induced decrease of Bax mobility and Bax translocation. These results for the first time present a novel pro-apoptotic action of SP600125 in DHA-induced apoptosis

    Expression pattern and activity of six glutelin gene promoters in transgenic rice*

    Get PDF
    The shortage of strong endosperm-specific expression promoters for driving the expression of recombinant protein genes in cereal endosperm is a major limitation in obtaining the required level and pattern of expression. Six promoters of seed storage glutelin genes (GluA-1, GluA-2, GluA-3, GluB-3, GluB-5, and GluC) were isolated from rice (Oryza sativa L.) genomic DNA by PCR. Their spatial and temporal expression patterns and expression potential in stable transgenic rice plants were examined with Ī²-glucuronidase (GUS) used as a reporter gene. All the promoters showed the expected spatial expression within the endosperm. The GluA-1, GluA-2, and GluA-3 promoters directed GUS expression mainly in the outer portion (peripheral region) of the endosperm. The GluB-5 and GluC promoters directed GUS expression in the whole endosperm, with the latter expressed almost evenly throughout the whole endosperm, a feature different from that of other rice glutelin gene promoters. The GluB-3 promoter directed GUS expression solely in aleurone and subaleurone layers. Promoter activities examined during seed maturation showed that the GluC promoter had much higher activity than the other promoters. These promoters are ideal candidates for achieving gene expression for multiple purposes in monocot endosperm but avoid promoter homology-based gene silencing. The GluC promoter did not contain the endosperm specificity-determining motifs GCN4, AACA, and the prolamin-box, which suggests the existence of additional regulatory mechanism in determining endosperm specificity
    • ā€¦
    corecore