
Optimal electric bus fleet scheduling considering battery
degradation and non-linear charging profile

Downloaded from: https://research.chalmers.se, 2022-01-01 18:13 UTC

Citation for the original published paper (version of record):
Zhang, L., Wang, S., Qu, X. (2021)
Optimal electric bus fleet scheduling considering battery degradation and non-linear charging
profile
Transportation Research Part E: Logistics and Transportation Review, 154
http://dx.doi.org/10.1016/j.tre.2021.102445

N.B. When citing this work, cite the original published paper.

research.chalmers.se offers the possibility of retrieving research publications produced at Chalmers University of Technology.
It covers all kind of research output: articles, dissertations, conference papers, reports etc. since 2004.
research.chalmers.se is administrated and maintained by Chalmers Library

(article starts on next page)



Transportation Research Part E 154 (2021) 102445

Available online 2 September 2021
1366-5545/© 2021 The Authors. Published by Elsevier Ltd. This is an open access article under the CC BY license
(http://creativecommons.org/licenses/by/4.0/).

Optimal electric bus fleet scheduling considering battery 
degradation and non-linear charging profile☆ 

Le Zhang a,c, Shuaian Wang b, Xiaobo Qu c,* 

a School of Economics and Management, Nanjing University of Science and Technology, Nanjing 210094, China 
b Department of Logistics and Maritime Studies, Hong Kong Polytechnic University, Hung Hom, Hong Kong 
c Department of Architecture and Civil Engineering, Chalmers University of Technology, Gothenburg 41296, Sweden   

A R T I C L E  I N F O   

Keywords: 
Electric bus scheduling 
Battery degradation 
Limited charging facilities 
Nonlinear charging profile 
Branch-and-price approach 

A B S T R A C T   

This study aims to determine the battery electric bus service and charging strategy to minimize 
the total operational cost of transit system, where the cost incurred by battery degradation and 
non-linear charging profile is taken into account. We formulate a set partitioning model for this 
problem, subject to predefined trip schedule and limited charging facilities. A tailored branch- 
and-price approach is then proposed to find the global optimal solution. In particular, we 
develop an effective multi-label correcting method to deal with the pricing problem (i.e., 
generating columns) in column generation procedure within the branch-and-price framework, 
coupled with a dual stabilization technique with an aim to accelerate the convergence rate. 
Meanwhile, a branch-and-bound solution approach is adopted to guarantee optimal integer so
lutions. Numerical experiments and a case study arising from real transit network are conducted 
to further assess the efficiency and applicability of the proposed method. Our experiments 
confirm that, despite the complexity of the considered problem, optimal solution can still be 
generated within reasonable computational time using the proposed algorithm. The results also 
show considerable cost saving (about 10.1–27.3% less) if this optimization model is implemented, 
mainly contributed by the substantial extension of battery life. A number of managerial insights 
stemmed from the numerical case study are outlined, which can help transit operators formulate 
more cost-efficient electric bus fleet scheduling plans.   

1. Introduction 

With local government in many countries implementing a range of policies (e.g., financial incentives, customer subsidies, and taxes 
on petroleum) to facilitate the introduction of electric vehicles, more and more transit operators begin to use battery electric buses 
(BEBs) to provide public service (Nie et al., 2016). In recent years, we have witnessed rapid market-share growths of BEBs in transit 
system. For example, in the year of 2016, the subsidy policy for BEBs named Elbusspremien was introduced in Sweden, where the bus 
companies and transit agencies could receive a discount of 20% in BEB’s purchase prices (Skog and Arbresparr, 2017). Since then, the 
bus fleets were gradually replaced by BEBs in some Swedish cities, e.g., Umea and Goteborg. Shenzhen, one of the largest cities in 
China, replaced all of its diesel city buses with BEBs in 2017. It is predicted that the number of BEBs in service would triple from 
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386,000 in 2017 to 1.2 million in 2025, accounting for 47 percent of the world’s total city bus fleet (Chediak, 2018). Undoubtedly, 
transit electrification is becoming an unstoppable trend and BEB fleets will dominate the future of public transit due to their 
considerable advantages in terms of reducing air pollutant and efficient energy consumption (An, 2020; Bie et al., 2020; Ghamami 
et al., 2016; Gu et al., 2020; Pelletier et al., 2019; Qu et al., 2020; Qu and Wang, 2021). 

Despite these advantages, the large-scale adoption of BEBs is still hampered by some technical constraints. BEBs typically involve 
much higher initial investment than conventional diesel buses, where the embedded battery packs are a major cost component. Even 
though the price of battery packs has been rapidly decreasing, a very significant portion of the bus cost can still be attributed to the 
battery (Nykvist and Nilsson, 2015). Moreover, battery capacity fades during charge and discharge cycling, and the battery perfor
mance degrades as consequence. The end of life (EoL) of a battery is reached when its available capacity under reference conditions has 
decreased to 70-80% of the initial value (Zhang et al., 2019). The battery packs in BEBs thus should be replaced periodically, which 
further decreases the attractiveness of BEBs (Pelletier et al., 2017; Schoch et al., 2018). Therefore, it is of utmost importance from a cost 
perspective to incorporate battery health considerations into scheduling schemes of BEBs. In addition, compared with conventional 
diesel buses, BEBs are still suffering from range anxiety problems and the limited travel range can further decline during operation due 
to battery capacity fading. Hence, BEBs usually cannot finish a whole day’s operation without recharging—although their longest drive 
range under normal urban road conditions has reached 250 km when lithium-ion battery packs are used. The need to recharge the 
buses while maintaining existing service schedule with well-considered battery management makes emerging BEB service more 
challenging to some extent and creates additional managerial problems for transit operators (Li, 2013; Kang et al., 2015; Lebeau et al., 
2016; Masmoudi et al., 2018). To address this dilemma and seize the market, a well-planned BEB scheduling with full consideration of 
battery health is thus crucial for the smooth operation of city BEBs. The relevant studies are scattered over a wide variety of journals 
spanning several research fields, including in particular the field of battery cells and transportation engineering. 

Currently, lithium-ion batteries are widely used in modern electric vehicles due to their high energy density. In the field of battery 
cells, researchers have conducted numerous laboratory aging tests to study the capacity fading mechanism of lithium-ion batteries and 
proposed a variety of prediction models. Even though the model forms and model parameters vary largely over the cell materials and 
modeling approaches, similar conclusions can still be found for all types of lithium-ion batteries embedded in BEBs: operating con
ditions are the major stress factors for battery aging, which is related to time, energy throughput, temperature, and in particular the 
state of charge (SoC) (Lam and Bauer, 2012; Grolleau et al., 2014; Zhang et al., 2019). Let us use LiFePO4

1 as an example. As per Fig. 1, 
we have 1) the total discharged energy till the EoL under a SoC variation from 100% to 10% is only half of that from 100% to 30%, as 
per the solid experimental data based on LiFePO4 cells; 2) given the same SoC variation or cycling SoC swing, the total discharged 
energy is negatively related to the average SoC level (Lam and Bauer, 2012). It is worth to note that the SoC-dependent battery capacity 
fading mechanism revealed above is valid for all types of lithium-ion batteries (e.g., LiCoO2, NCA, Li(NiCoAl)O2 and LiFePO4 cells): the 
higher either the SoC variation or average SoC level is, the faster battery capacity fades. Therefore, transit operators are suggested to 
keep the SoC of battery packs in a range that is as narrow as possible (i.e., smallest SoC variation) and at a low level (i.e., lowest average 
SoC level), which will substantially prolong battery lifespan and thus achieve cost saving in the long run. However, the need to 
constrain SoC within a narrow range and at a low level would influence the current BEB scheduling schemes and BEB fleet size as well, 
especially when charging facilities are limited. To the best of our knowledge, whereas much efforts have been made in the field of 
battery cells to study battery aging mechanism, no existing study has incorporated the above critical features in transport engineering 
studies. 

From the perspective of transportation engineering, optimal scheduling of BEBs has attracted increasing attention in recent 
research and been extensively examined in the context of vehicle scheduling problem (VSP) (Li, 2013; Alder and Mirchandani, 2014; 
Wen et al., 2016; Wang et al., 2017; Li et al., 2018; Rinaldi et al., 2019) and vehicle routing problem (VRP) (Schneider et al., 2014; 
Keskin and Çatay, 2016; Hiermann et al., 2016; Montoya et al., 2016; Yi et al., 2018). In particular, for the specific instance of BEB 
scheduling, either route duration or route distance is constrained in the model. Meanwhile, the transit network is equipped with some 
charging points (i.e., public swapping and charging stations) where BEBs can be fully or partially replenished (Hof et al., 2017; 
Montoya et al., 2016; Adler and Mirchandani, 2014). These studies presented how to manage and schedule the full-BEB fleet or hybrid- 

Fig. 1. Total discharged energy till EoL under different SoC ranges based on LiFePO4 cells with a normal capacity of 1.1 Ah.  

1 LiFePO4 cell is a type of lithium-ion battery. 
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BEB fleet to yield the least operational costs and reduce the overall pollutant emissions as well (Li, 2013; Li, 2016; Rinaldi et al., 2019). 
For example, Li (2013) proposed a vehicle-scheduling model for BEBs with either battery swapping or fast charging to minimize total 
operational cost subject to predefined trip schedule, while Rinaldi et al. (2019) focused on the optimal scheduling of mixed BEB fleet. 
Unfortunately, due to complexity of electrochemical properties in lithium-ion batteries, very little attention has been dedicated to 
explicitly considering battery health in BEB scheduling. What is more, to remedy the range anxiety problem, recent studies in electric 
vehicle scheduling usually require charging the battery in full, which would lead to larger SoC variation, higher average discharge 
interval, and subsequently higher capacity fading rate (Schneider et al., 2014; Hiermann et al., 2016). Empirical evidence from field 
trials also shows that majority of transit operators prefer to reconnect the BEBs for full charging overnight to have the full range 
available in the next day. Although this frequent full-charging behavior could minimize the drivers’ anxiety, this benefit is achieved at 
the cost of shortening battery’s lifetime. Hence, the joint consideration of BEB service schedule, charging strategy, and their impact on 
battery capacity fading is essential in terms of prolonging the battery lifetime and minimizing total operational cost. 

In addition, the electrochemical properties of batteries suggest that SoC increases nonlinearly with respect to the charging time. 
This nonlinear charging profile is another feature of utmost importance whilst was paid little attention to by transport planning 
community. In general, the battery level increases concavely with charging time, instead of linearly, because the terminal voltage and 
current vary during the charging process (Pelletier et al., 2017). Assuming linearly charging profile would overrate the charging ef
ficiency and lead to the underestimation of the fleet size of BEBs (Montoya et al., 2017; Xu and Meng, 2019). In this study, we will 
bridge the research gap as well by incorporating the nonlinear charging profile into the fleet size determination for BEB transit service. 

In light of the above, there is a need for further development in BEB scheduling problem, regarding how to take certain fundamental 
battery characteristics into account. In this paper, we will advance the research frontier by incorporating battery management into the 
optimization framework of BEB scheduling. To be specific, we focus on examining how to best schedule BEBs to serve the trips 
originating from and returning to a single central terminal. Our objective is to minimize the total operational cost by determining 
service sequence of BEBs, charging strategy and BEB fleet size, subject to limited charging facilities. To explicitly consider battery 
health in charging recommendations, the cost incurred by battery degradation is set as a primary objective, i.e., a major cost 
component of total operational cost. Meanwhile, realistic nonlinear charging profile and partial charging are well-considered in the 
optimization framework, which would make the decision-makings more complicated. To achieve this goal, a set partitioning model is 
built for the studied problem, and this modeling approach is widely adopted in some previous work in the context of VSP (Li, 2013; Xu 
and Meng, 2019). A tailored branch-and-price (B&P) approach is subsequently proposed to solve the model. To be specific, we firstly 
design a column generation (CG) procedure to solve the linear relaxation of the problem, coupled with a dual stabilization technique 
aimed at accelerating the convergence rate of the proposed algorithm. Then to guarantee feasible integer solutions, the CG procedure is 
embedded into a branch-and-bound (B&B) search framework. It is worth to note that, the solution approach is developed by fully 
taking advantage of the model’s unique features, which will be described in detail over the following sections. The models and solution 
approach are tested through a large number of numerical experiments. The results unveil that by taking certain fundamental elec
trochemical properties of lithium-ion batteries into consideration, the optimal total cost can be saved by up to 10.1–27.3% and the 
battery’s service life can be extended by additional 47.2–96.1% approximately. 

Our key contributions from a theoretical and practical point of view can be summarized as follows:  

(i) We are, to our best knowledge, the first to formulate and solve BEB scheduling problem that incorporates both battery health 
considerations and nonlinear charging profile into the optimization framework;  

(ii) With full consideration of the problem’s unique features, a specialized branch-and-price solution method is proposed to 
guarantee the global optimum of the model within moderate runtimes for real-life-scale instance;  

(iii) A number of managerial insights stemmed from the numerical case study are outlined, which can serve as a solid theoretical 
foundation for more cost-efficient BEB service. 

The rest of this paper is organized as follows. Section 2 presents the problem description. A set partitioning model for the studied 
problem is built in Section 3. Section 4 elaborates the proposed B&P approach for solving the problem. The computational efficiency of 
our approach is tested in Section 5. Numerical case studies are furnished in Section 6. Conclusions and potential extensions of the 
present work are discussed in Section 7. 

2. Problem description 

To explicitly elaborate a single-terminal BEB scheduling problem, several aspects of this problem will be covered in this section. To 
be specific, the single-terminal transit network, definition, feasibility and cost of a trip chain are described in Section 2.1. The battery 
degradation mechanism and the nonlinear charging profile of BEBs are presented in Sections 2.2 and 2.3 respectively. Following that, 
Section 2.4 summarizes the joint consideration of BEB scheduling and charging strategy. The notations used throughout this study are 
summarized in Appendix A. 

2.1. Single-terminal transit network and trip chains 

In this study, a single-terminal transit network is adopted to define the BEB scheduling problem, guaranteeing that a sequence of 
timetabled round-trips can be satisfied successfully, as shown in Fig. 2. The selected terminal is equipped with limited normal charging 
facilities and the capacity is denoted as C. The BEBs can be charged when parking at the terminal if there exist available charging 
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facilities. Such transit network is commonly used (e.g., Shenzhen city and Luxembourg city) and has been studied in a number of works 
in the context of bus scheduling (Kim and Schonfeld, 2013; Rinaldi et al., 2019). For simplicity, we will refer to the round-trip as trip for 
short from now on. Here we discretize time domain into consecutive time steps t ∈ {1,2,⋯,T} with a discretization step as L . All the 
trips, predefined by the transit planners, are grouped into a set denoted by I. For each trip i ∈ I, it is described by a triple Qi =

{si, ei,mi}, where si indicates the departure time [time step], ei stands for the cycle (terminal to terminal) duration [time step], and mi 
denotes the proportion of electricity consumed with respect to the maximum possible charge it can hold [%]. The above information 
for each trip i ∈ I is deterministic and assumed to be known a priori. This assumption is acceptable for tactical decision-making 
problem targeted by this study. Also note that, for the ease of presentation, analogous to the expression of mi, the amount of elec
tricity replenished at terminal station is also expressed as the variation of electrical charge in percentage. 

Let SoCinit denote the initial SoC of the BEB at the very beginning of daily operation period. It is defined as a model parameter in this 
study and its effect on the objective value will be carefully examined in the numerical cases. Throughout the paper, we adopt the 
assumption that the BEB is always charged to SoCinit whenever charging activity occurs during the daily operation period. In addition, 
at the end of daily operation, the BEB will be recharged back to SoCinit to prepare for the next day’s service. This assumption is well in 
line with the empirically observed charging behaviors as it is convenient to apply and requires less organizational effort (Qin et al., 
2016; Rinaldi et al., 2019). Also note that, in practice, BEBs are usually fully charged or near fully charged at the very beginning of 
daily operation period, because trip services are mostly concentrated during the daytime and BEBs can thus be charged overnight. 
Therefore, it is reasonable to constrain SoCinit by: 

70% ≤ SoCinit ≤ 100% (1) 

Consider a transit operator who operates the daily public transport services using a fleet of homogeneous BEBs. To satisfy the 
service demand with lowest operational cost, a BEB may be used to serve several trips consecutively during the daily operation period, 
and battery charging may be implemented between any two adjacent trips to ensure enough energy. For ease of elaboration, we refer to 
a series of trip services undergone by the same BEB during the daily operation period as a trip chain (Xu and Meng, 2019). To be 
specific, a trip chain r consists of a series of trips sorted in an ascending order in terms of their departure time, and can be expressed as: 

r = (i1, i2,⋯, inr ) (2)  

where nr indicates the total number of trips covered in trip chain r. 
The charging strategy along trip chain r with trips i1, i2,⋯, inr is denoted as Ψr. It refers to the charging amount and specific charging 

moment between any two adjacent trips covered by the trip chain r; and can be expressed by: 

Ψr =
{

φik , μikt|k = 1, 2,⋯, nr − 1
}

(3)  

where φik 
is defined as a binary variable that equals 1 if charging operation is implemented between trips ik and ik+1, and 0 otherwise; 

μik t is also defined as a binary variable that equals 1 if BEB begins to charge in time step t after finishing trip ik, and 0 otherwise. Due to 
limited charging facilities, if BEB begins to charge immediately on arrival, there may be no available charging facilities at present and 
the start time to be charged after each trip service should thus be optimized jointly. It is also worth to note that φinr

is constant (i.e., 
φinr

= 1) because the charging operation is surely implemented at the end of each trip chain to prepare for the upcoming day’s service. 
Meanwhile, we also pay less attention on the specific charge starting time after trip inr as the BEB is out of service after that until the 
next day’s service begins. Therefore, the charging strategy applied on BEB after trip inr is ignored in Ψr, as the range of k shown in Eq. 
(3). In addition, the decision variable μik t should satisfy the following conditions: 

∑

t∈T
μik t = φik , ∀k = 1, 2,⋯, nr − 1 (4a)  

Fig. 2. Single-terminal transit network.  
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∑

t∈T
μik t t+

(
1 − φik

)
M ≥ sik + eik , ∀k = 1, 2,⋯, nr − 1 (4b)  

where M is a sufficiently large number. Constraint (4a) indicates that if the charging operation occurs after trip ik (i.e., φik = 1), the 
charging operation must start in a certain time step, i.e., exists a time index t, such that μikt equals 1; otherwise, μik t equals 0 for all the 
time index t ∈ T. Constraint (4b) indicates that, if the charging operation occurs after trip ik (i.e., φik = 1), then the starting time of 
charging operation (i.e., 

∑
t∈Tμik t t) should be no earlier than the trip ending time (i.e., sik + eik ). 

A trip chain r with charging strategy Ψr is feasible, if the following conditions are fulfilled:  

(1) all the covered trips can be performed on time;  
(2) battery energy is sufficient to support all the covered trips given that BEB can be charged at terminal station if both time and 

charging facilities permit. 

For trip chain r with trips i1, i2,⋯, inr , the first condition can be expressed by: 

zik ≤ sik+1 , ∀k = 1, 2,⋯, nr − 1 (5)  

where zik indicates the ready-to-depart time [time step] of BEB after finishing trip ik. It equals the ending time of trip ik if no charging 
operation occurs after trip ik, i.e., trips ik and ik+1 are covered seamlessly without charging operation; and equals the ending time of 
charging operation otherwise: 

sik + eik − φik M ≤ zik ≤ sik + eik +φik M, ∀k = 1, 2,⋯, nr − 1 (6a)  

∑

t∈T
μik t t+ g

(
SoCik , SoCinit

)
−
(
1 − φik

)
M ≤ zik ≤

∑

t∈T
μik tt+ g

(
SoCik , SoCinit

)
+
(
1 − φik

)
M, ∀k = 1, 2,⋯, nr − 1 (6b)  

where SoCik indicates the SoC at the end of trip ik and g
(
SoCik , SoCinit

)
returns the number of time steps required to charge from SoCik to 

SoCinit . In addition, the term g
(
SoCik , SoCinit

)
should align with the nonlinear charging profile of BEBs, which will be detailed in the 

following subsection. 
For the trip chain r with trips i1, i2,⋯, inr , the SoC at the end of trip ik, SoCik , can be expressed recursively: 

SoCik = SoCinit − mik , if k = 1 (7a)  

SoCik− 1 − mik − φik− 1
M ≤ SoCik ≤ SoCik− 1 − mik +φik− 1

M, ∀k = 2,⋯, nr (7b)  

SoCinit− mik −
(
1 − φik− 1

)
M ≤ SoCik ≤ SoCinit − mik +

(
1 − φik− 1

)
M, ∀k = 2,⋯, nr (7c) 

Constraint (7a) initializes the SoC of BEBs. Constraints (7b) and (7c) state that if BEB is replenished after trip ik− 1, the SoC of BEB is 
reset as SoCinit and SoCik is equal to SoCinit − mik ; otherwise, SoCik is equal to SoCik− 1 − mik . 

Since the minimal SoC may occur at the end of each trip, the second condition to ensure feasibility of trip chain restricts that: 

SoCik ≥ SoC, ∀k = 1, 2,⋯, nr (8)  

where SoC denotes the lower bound of SoC to relax drivers from the range anxiety. 
In light of the above, constraints (3)–(8) guarantee the feasibility of trip chain r with trips i1, i2,⋯, inr . Given trip chain r, the total 

operational cost along trip chain r, denoted as Jr, can be expressed as the sum of charging fees, A(Ψr), cost incurred by battery 
degradation, D(Ψr), and a fixed cost term related to bus acquisition (without battery), denoted by E and measured in $/veh-day: 

Jr = A(Ψr)+D(Ψr)+E (9) 

Here A(Ψr) can be easily obtained via multiplying the total charging amount [kWh] by unit electricity price [$/kWh], while the 
calculation of D(Ψr) will be elaborated in the next subsection. 

2.2. Modeling of battery aging mechanism 

The capacity of lithium-ion batteries degrades during charging and discharging cycle, corresponding to cycle aging, thereby 
reducing the battery’s available power output and shortening the vehicle’s available range. To be specific, BEBs can be charged at the 
terminal station after trip service, while the discharge of the BEB battery occurs when the BEB travels on the road. Therefore, for BEB, 
the capacity fading resulting from cycle loss accumulates over the course of the whole trip chain taken by this BEB. Meanwhile, the 
capacity fading rate of lithium-ion batteries is highly related to SoCs in terms of both SoC variation and average SoC level: the higher 
either the SoC variation or average SoC level is, the faster battery capacity fades. Since different types of lithium-ion batteries present 
similar electrochemical properties as described above, without loss of generality, we assume that BEBs studied in this paper are 
equipped with a specific kind of lithium-ion batteries, i.e., LiFePO4 cell. We borrow the empirical model developed by Lam and Bauer 
(2012) to describe the cycle aging of batteries over each charge and discharge cycle of LiFePO4 cells. In particular, for trip chain r, if the 
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charging operation is implemented after finishing trip ik, i.e. φik = 1, consider the cycle in terms of SoC decreasing from SoCinit to SoCik 

and increasing back to SoCinit again, as illustrated in Fig. 3. This discharge and charge cycle is referred to Γik for short. It is worth to note 
that since the actual SoC variations along time during each cycle depend on the operation conditions of BEB as well as the battery 
charging profile, Fig. 3 is not to describe the exact SoC variations at the micro level, but to intuitively depict its change trend for the 
ease of presentation. The corresponding capacity fading rate occurring in cycle Γik , denoted as ξ, is expressed as a function of both SoCik 

and SoCinit , as presented in Eq. (10a-c). It records the kWh faded per kWh processed during both charging and discharging operation. 
For example, if ξ equals 10− 4, it indicates that the battery capacity would fade by 10− 4 kWh whenever 1 kWh is charged into the battery 
or discharged from the battery. A sketched derivation of Eq. (10a-c) is furnished in Appendix B in the interest of brevity. 

ξ
(
SoCik , SoCinit

)
= γ1SoCik ,dev∙eγ2SoCik ,avg + γ3eγ4SoCik ,dev (10a)  

where 

SoCik ,avg =
SoCinit + SoCik

2
, (10b)  

SoCik ,dev =
SoCinit − SoCik

2
(10c) 

Here SoCik ,avg records the average SoC in cycle Γik , while SoCik ,dev captures the deviation of SoC from the average SoC value. Higher 
SoCik ,dev corresponds to larger SoC variation, i.e. ΔSoC, where ΔSoC is defined as the difference between SoCinit and SoCik . The co
efficients γ1, γ2, γ3 and γ4 are constant model parameters. 

In general, a BEB battery reaches EoL when its available capacity decreases to 70%-80% of its original capacity. This EoL related 
threshold is represented by χ. In this paper, χ equals 30%, indicating the battery reaches to its EoL when its current capacity declines by 
30% of its initial capacity. When the battery reaches to EoL, it can be recycled for energy storage system. In our paper the salvage value 
of battery is set as W to represent its second-life application. Then for the discharge and charge cycle Γik , the corresponding cost 
incurred by battery degradation, denoted as d

(
SoCik , SoCinit

)
, is thus calculated by: 

d
(
SoCik , SoCinit

)
=

2 × ξ
(
SoCik , SoCinit

)
×
(
SoCinit − SoCik

)
× Q

χ × Q
(B − W)

Fig. 3. Illustration of discharge and charge cycle.  

Fig. 4. An example for BEB trip chain and corresponding SoC variations.  
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=
2 × ξ

(
SoCik , SoCinit

)
×
(
SoCinit − SoCik

)

χ (B − W) (11)  

where B indicates battery acquisition cost; Q denotes the battery capacity [kWh]. The term 2 × ξ
(
SoCik , SoCinit

)
×
(
SoCinit − SoCik

)
× Q 

is the faded capacity within cycle Γik [kWh]; and the term χ × Q represents the battery’s effective capacity [kWh]. 
The total cost incurred by battery degradation in the course of trip chain r, D(Ψr), is the sum of battery degradation cost occurring in 

each discharge and charge cycle: 

D(Ψr) =
∑nr − 1

k=1
φik d

(
SoCik , SoCinit

)
+ d

(
SoCinr

, SoCinit
)

(12)  

where the last term on the right-hand side of Eq. (12) is related to the charging operation implemented at the end of daily operation 
period. For the ease of presentation, we use the toy example presented in Fig. 4 to explain the cycle aging occurring over the trip chain. 
Here, it is supposed that we have 9 trips in the considered transit system and they are numbered by 1, 2, 3,⋯9 in an ascending order in 
terms of their departure time. Fig. 4 illustrates an example of BEB trip chain (i.e., trip 1→ trip 3→ trip 5→ trip 9) and its charging 
strategy (i.e., bus is charged between trip 3 and 5, and after trip 9), where SoCinit is set as 95% a priori. We can see that there are two 
discharge and charge cycles with SoC ranges as [35%, 95%] and [55%,95%] respectively. These two cycles correspond to different 
battery capacity fading rates due to different lower bounds of SoC ranges. The related battery degradation cost along the trip chain 
example equals the sum of costs incurred by cycle loss occurring in these two cycles. 

2.3. Nonlinear charging profile 

The battery of BEB is generally charged with a constant current-constant voltage (CC-CV) or constant power-constant voltage (CP- 
CV) scheme (Liu, 2013). In both schemes, the battery’s SoC concavely increases with respect to the charging time. As the proposed 
methodology is independent of the exact form of the charging profile, we assume without loss of generality that the BEBs are charged 
under CC-CV scheme, where the battery would undergo two phases, namely CC phase and CV phase. In the first phase (i.e., CC phase), 
the charging current is held constant and hence the SoC increases linearly with time until the battery’s terminal voltage reaches the 
threshold. After that, the terminal voltage keeps constant (i.e., CV phase), thus resulting in the current decreasing exponentially and 
the SoC increasing concavely with respect to the charging time (Marra et al., 2012), as intuitively depicted in Fig. 5. 

The battery nonlinear charging model with a CC-CV scheme can be presented by a piecewise function (Pelletier et al., 2017; 
Montoya et al., 2017). In particular, in the CC phase, the constant charging current is denoted by Icc; then the SoC is a linear function of 
the charging time: 

SoC(t) =
∫

I(t)dt
A

=
Icc × t

A
, t ∈

[
0, t̃

]
(13)  

where A indicates the battery capacity in the unit of Ah. After the SoC reaches the maximum achievable SoC in CC phase, denoted as 
S̃oC, the SoC would increase slowly and enter into CV phase, which can be represented by a set of complex differential equations 
(Pelletier et al., 2017) or a piecewise linear function with gradually decreasing slopes (Montoya et al., 2017). This switch time point is 
denoted as ̃t. For ease of presentation, the charging profile in CV phase is denoted as F (t): 

SoC(t) = F (t), t ∈
[
t̃, t̂

]
(14) 

As illustrated in Fig. 5, ŜoC is the maximum value of SoC achievable at the end of CV phase and ̂t indicates the time required to 

Fig. 5. Illustration of nonlinear charging profile.  
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charge to ŜoC. 
For trip chain r, if the charging operation is implemented after finishing trip ik, i.e. φik = 1, the corresponding charging time 

g1
(
SoCik , SoCinit

)
and number of required time steps g

(
SoCik , SoCinit

)
can be derived as: 

g1
(
SoCik , SoCinit

)
=

⎧
⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

(
SoCinit − SoCik

)
× A

Icc
, if SoCik < SoCinit ≤ S̃oC

F
− 1(SoCinit) −

SoCik × A

Icc
, if SoCik ≤ S̃oC < SoCinit

F
− 1(SoCinit) − F

− 1( SoCik

)
, if S̃oC < SoCik < SoCinit

(15a)  

g
(
SoCik , SoCinit

)
=

⌈
g1
(
SoCik , SoCinit

)

L

⌉

(15b)  

where F − 1 denotes the inverse function of F ; function ⌈a⌉ returns the smallest integer that is no smaller than a. 

2.4. Joint consideration of BEB service schedule, charging strategy and their impact on battery aging 

To minimize the total operational cost, the charging strategy, i.e., charging amount/duration and the start time to be charged after 
each trip service, and its impact on battery aging should be jointly considered with the trip allocation plan. To the specific, the 
nonlinear charging profile indicates distinct charging efficiency when initiating charging at different SoC levels. It means that the 
charging amount does not increase linearly with charging time when S̃oC < SoCinit , and the charging efficiency decreases as the initial 
charging SoC increases. However, if initiating charging with lower SoC, it may result in higher battery degradation cost due to larger 
SoC variations. In addition, the limited charging facilities entail the decision-makings more complicated, where the starting time to be 
charged should also be jointly optimized. If BEB begins to charge immediately on arrival, there may be no available charging facilities 
at present. However, if the BEB waits longer, it may miss the departure time of next trips. 

As the battery degradation model and nonlinear charging profile have been nicely reflected in trip chains, the objective of this 
problem is to minimize the daily operational cost by finding the optimal trip chains from the pool of feasible trip chains to guarantee 
that the predefined trip set can be satisfied successfully while the capacity of charging facilities is not exceeded at each time step. 
Apparently, the proposed problem is NP-hard as its special case without the allowance of partial charging and ignoring battery 
degradation process has been demonstrated to be NP-hard (Rinaldi et al., 2019). 

3. A set partitioning model 

Let R denote the set of all feasible trip chains (i.e., including service sequence and charging strategy) within the daily operation 
period, satisfying the minimal battery level constraint. For each feasible trip chain r ∈ R, we define a binary variable λr, which equals 
one if and only if the trip chain r is selected; and to zero otherwise. Then the considered BEB scheduling problem can be formulated as a 
mixed integer linear programming, i.e., a set partitioning model: 

Mathematical model [P1] 

minJ[P1] =
∑

r∈R
Jrλr (16a)  

subject to: 
∑

r∈R
Hr

i λr = 1, ∀i ∈ I (16b)  

∑

r∈R
Ur

t λr ≤ C, ∀t ∈ T (16c)  

λr ∈ {0, 1}, ∀r ∈ R (16d) 

Objective function (16a) minimizes the total operational cost within the daily operation period. Constraint (16b) ensures that each 
trip i ∈ I is served exactly once in the solution, where coefficient Hr

i is set to one if trip i is covered in trip chain rand to zero otherwise. 
Constraint (16c) guarantees that the number of charging facilities used in each time step is no more than the limited capacity C; and Ur

t 
equals one if BEB is charged at time step t in trip chain rand to zero otherwise. Constraint (16d) defines the domains of decision 
variables λr, r ∈ R. 

In the above objective function (16a), Jr denotes the operational cost of trip chain r ∈ R, including charging fees, cost incurred by 
battery degradation and the bus acquisition cost as shown in Eq. (9). Together with Eq. (9) and constraint (16b), we have: 

J[P1] =
∑

r∈R
Jrλr 
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=
∑

r∈R
A(Ψr)λr +

∑

r∈R
D(Ψr)λr +

∑

r∈R
λrE  

= ϰ∙Q∙
∑

i∈I
mi +

∑

r∈R
D(Ψr)λr +

∑

r∈R
λrE (17)  

where ϰ indicates the unit electricity price [$/kWh]. It implies that the total charging fees is a constant term. Therefore, the charging 
fees are ignored in our model from now on. 

The huge number of feasible trip chains (i.e., the number of decision variables) makes the model [P1] intractable even for a small 
size problem. It is thus time consuming to solve this problem directly via model [P1]. We next present a tailored B&P algorithm to solve 
this set partitioning model [P1]. 

4. Branch-and-price approach 

The set partitioning model is a mixed integer linear programming and can be solved to optimality by B&P approach. Specifically, 
B&P is a combination of CG and B&B methods. In the B&P framework, the CG technique is adopted to solve the linear relaxation of this 
set partitioning model [P1], as shown in Section 4.1. Then, to guarantee the feasible integer solutions, a B&B scheme is used to obtain 
the optimal integer solution, as presented in Section 4.2. Section 4.3 presents the framework of B&P approach, where the efficiency of 
this tailored B&P approach highly depends on how to effectively solve the pricing problem by taking advantage of the unique problem 
features. That is the key and difficult part of the solution approach. 

4.1. Column generation procedure 

We now describe the CG procedure to solve linear relaxation of this set partitioning model, referred to as master problem (MP): 
Mathematical model [P2] 

minJ[P2] =
∑

r∈R
Jrλr (18a)  

subject to: (16b-c) 

λr ≥ 0 (18d) 

Here model [P2] contains all of the possible trip chains. Therefore, the size of R and the corresponding computational time grow 
exponentially with the problem size. To lower the dimension of model [P2], CG method is used to solve model [P2] by repeatedly 
solving (i) a restricted master problem (RMP) with a subset of trip chains (Section 4.1.1) and (ii) a pricing problem (Section 4.1.2) to 
generate new trip chains (i.e., columns) with negative reduced costs (for minimization problem). Column generation stabilization is 
presented in Section 4.1.3. 

4.1.1. Restricted master problem of the column generation procedure 
The RMP with a subset of feasible trip chains R’ ∈ R is formulated in model [P3]. Initially, we derive R’ by a heuristic algorithm to 

ensure the existence of a feasible initial solution in model [P3]. The details of heuristic algorithm to generate R’ are relegated to 
Appendix C. 

Mathematical model [P3] 

minJ[P3] =
∑

r∈R’

Jrλr (19a)  

subject to: 
∑

r∈R’

Hr
i λr = 1, ∀i ∈ I (19b)  

∑

r∈R’

Ur
t λr ≤ C, ∀t ∈ T (19c)  

λr ≥ 0 (19d) 

The dual variables of model [P3] are defined as: 
πi: the dual variable for constraint (19b), i ∈ I; 
βt: the dual variable for constraint (19c), t ∈ T. 
At each iteration of column generation, the dual variables of model [P3], Ω := {πi, βt |i ∈ I, t ∈ T} are the input parameters of pricing 

problem [P4] to generate new feasible trip chain (i.e., column) with the lowest reduced cost (i.e., the objective of model [P4]). The 
column generation procedure terminates when the minimal reduced cost is non-negative, indicating no feasible trip chains can be 
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added to R’ in model [P3]. 

4.1.2. Pricing problem of the column generation procedure 
To generate new columns, we next present the model of pricing problem. The goal of pricing problem is to find a feasible trip chain 

with negative reduced cost. In regard of this, the decision variables of pricing problem are defined as follows: 
δij ∈ {0,1}: set to one if a BEB serves trips i and j consecutively, where trip i begins earlier than trip j (i.e., trip i immediately 

precedes trip j); and to zero otherwise, i ∈ I ∪ O, j ∈ I ∪ D, i ∕= j; here, we use O and D simply to represent the original and destination 
depot respectively for notational convenience; 

φi ∈ {0,1} : set to one if the charging operation is implemented after trip i and before serving the subsequent trip; and to zero 
otherwise, i ∈ I; 

μit ∈ {0,1}: set to one if BEB begins to charge in the time step t after trip i and before serving the subsequent trip; and to zero 
otherwise, i ∈ I, t ∈ T; 

ηit ∈ {0,1}: set to one if BEB ends charging in the time step t after trip i and before serving the subsequent trip; and to zero 
otherwise, i ∈ I, t ∈ T; 

ϕit ∈ {0,1}: set to one if BEB is charged in the time step t after trip i and before serving the subsequent trip; and to zero otherwise, 
i ∈ I, t ∈ T. 

According to the standard procedure of CG method, the model of pricing problem can be formulated as follows: 
Mathematical model [P4] 

minJ[P4] = E+
∑

i∈I
φid(SoCi, SoCinit)+

∑

i∈I
δiDd(SoCi, SoCinit) −

∑

i∈I
πi

∑

j∈I∪D
δij −

∑

t∈T

∑

i∈I
ϕitβt (20a)  

subject to: 
∑

i∈I
δOi = 1 (20b)  

∑

i∈I
δiD = 1 (20c)  

∑

j∈I∪D
δij −

∑

j∈I∪O
δji = 0, ∀i ∈ I (20d)  

φi ≤
∑

j∈I
δij, ∀i ∈ I (20e)  

∑

t∈T
μit = φi, ∀i ∈ I (20f)  

∑

t∈T
ηit = φi, ∀i ∈ I (20g)  

∑

t∈T
μit∙t+(1 − φi)M ≥ si + ei, ∀i ∈ I (20h)  

∑

t∈T
ηit∙t ≥

∑

t∈T
μit∙t+ g(SoCi, SoCinit) − (1 − φi)M, ∀i ∈ I (20i)  

∑

t∈T
ηit∙t ≤

∑

t∈T
μit∙t+ g(SoCi, SoCinit)+ (1 − φi)M, ∀i ∈ I (20j)  

ϕit =
∑

t̃≤t

μ
ĩt
−
∑

t̃≤t

η
ĩt
, ∀i ∈ I, t ∈ T (20k)  

si + ei ≤ sj +
(
1 − δij

)
M, ∀i, j ∈ I (20l)  

∑

t∈T
ηit∙t ≤ sj +

(
1 − δij

)
M, ∀i, j ∈ I (20m)  

SoCi ≤ SoCinit − mi +(1 − δOi)M, ∀i ∈ I (20n)  

SoCi ≥ SoCinit − mi − (1 − δOi)M, ∀i ∈ I (20o)  

SoCj ≤ SoCi − mj +
(
1 − δij

)
M +φiM, ∀i, j ∈ I (20p) 
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SoCj ≥ SoCi − mj −
(
1 − δij

)
M − φiM, ∀i, j ∈ I (20q)  

SoCj ≤ SoCinit − mj +
(
1 − δij

)
M +(1 − φi)M, ∀i, j ∈ I (20r)  

SoCj ≥ SoCinit − mj −
(
1 − δij

)
M − (1 − φi)M, ∀i, j ∈ I (20s)  

SoCi ≥ SoC, ∀i ∈ I (20t) 

In the above model, the objective function (20a) is to minimize the reduced cost of BEB schedule, where the input parameters 
πi(i ∈ I) and βt(t ∈ T) are the dual variables of model [P3]. Constraints (20b-c) indicate a trip chain originates from depot O and 
terminates at depot D. Constraint (20d) represents covering and flow conservation. Constraint (20e) indicates that the charging 
operation may be implemented after a trip if the trip is covered by trip chain. Constraints (20f)–(20h) state that if charging operation is 
implemented, the charging operation must start and end in a certain time step, and the starting time should be no earlier than the trip 
ending time. Constraints (20i)–(20j) indicate that the ending time of charging operation is equal to the corresponding starting time plus 
required charging duration. Constraint (20k) links variable μit, ηit and φit. Constraints (20l)–(20m) ensure that the BEB must finish trip i 
or charging operation no later than the departure time of trip j if δij = 1. Constraints (20n)–(20o) indicate that the initial SoC of BEB is 
SoCinitwhen it departs from the original depot O. Constraints (20p)–(20s) capture the discharging/charging dynamics when δij equals 1: 
if BEB is replenished after trip i, the SoC of BEB is reset as SoCinit and SoCj is equal to SoCinit − mj; otherwise, SoCj is equal to SoCi − mj. 
Constraint (20t) guarantees that SoC should be no smaller than a predefined lower bound SoC to relax drivers from the range anxiety. 

The pricing problem is an extension of resource constrained shortest path problem by allowing replenishment along a path. One of 
its special case is the resource constrained shortest path problem, which has been proved to be NP-hard (Garey and Johnson, 1979). 
Therefore, the pricing problem is also NP-hard. Meanwhile, the nonlinear charging profile makes the pricing problem nonlinear by 
nature; the complex expression of d(SoCi, SoCinit) and limited charging facilities render the pricing problem more cumbersome to find 
the optimal solution by standard solution approach. Fortunately, we can take advantage of lithium-ion batteries’ electrochemical 
properties to solve this pricing problem. 

We firstly construct a pseudo-network denoted by G = (I ∪ O ∪ D,L) to solve the pricing problem. Each trip i ∈ I is represented by a 
node i ∈ I in the network. Meanwhile, node i is associated with node cost − πi, electricity consumption mi, departure time si and 
returning time si + ei. All the nodes are sorted in ascending order in terms of the departure time and named in sequence as node 1, node 
2, ⋯,until node |I|. The set of arcs L includes: (i) from original depot O to i ∈ I; (ii) from i ∈ I to j ∈ I if si + ei ≤ sj; and (iii) from i ∈ I to 
destination depot D. For each node i ∈ I, it is associated with two charging operation choices: charging operation is implemented after 
trip i; or consecutively serve the upcoming trip without charging operation. The objective to find the trip chain with the minimal 
reduced cost is thus equivalent to finding the shortest path in the constructed network G, where the arc distance/cost depends on the 
selected charging operation. Note that for node i ∈ I, the number of required time steps for charging operation varies from its former 
connected nodes and selected charging operations. If the charging operation is implemented, we always choose the consecutive time 
steps with the lowest sum of − βt to finish each charging operation. 

To reduce the searching space, the above constructed network should be preprocessed by eliminating the infeasible and un-optimal 
nodes and links. We firstly present an important electrochemical property of lithium-ion batteries, as detailed in the following lemma. 

Lemma 1. Given SoCinit ∈ [70%,100%], ξ(SoC0, SoCinit) is a monotonically decreasing function of SoC0. 

Lemma 1 can be proved by deriving ∂ξ(SoC0 ,SoCinit)
∂SoC0

< 0. However, the derivation process is cumbersome due to the complex math
ematical form of function ξ(SoC0, SoCinit). Fortunately, SoC is recorded with the unit of 1% in practice. In regard of this, we could 

Fig. 6. Effect of initial charging SoC on battery degradation rate given SoCinit = 95%.  
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approximate SoC as discrete variable, and Lemma 1 can thus be easily proved by comparing ξ under different SoC0 values for a given 
SoCinit ∈ [70%,100%]. For example, Fig. 6 intuitively presents the battery degradation rate along different initial charging SoCs (i.e., 
SoC0), given SoCinit = 95%. Lemma 1 indicates that the battery capacity fading rate is a monotonically increasing function of SoC 
variation ΔSoC, for a given SoCinit ∈ [70%, 100%]. Based upon Lemma 1, we next present Proposition 1 and Proposition 2 to build 
efficient solution approach for the pricing problem. 

Proposition 1. If the optimal value of model [P4], denoted as J*
[P4], is negative, there exists an optimal trip chain r*such that for all the 

covered trips, we have d(SoCinit − mik ,SoCinit) − πik < 0, ∀k = 1,2,⋯,nr* . 

Proof. We use contradiction to prove this proposition. The charging strategy along trip chain r* is denoted asΨr* . Suppose there exists 
trip ik covered in trip chain r*such that d(SoCinit − mik ,SoCinit) − πik ≥ 0. 

We next construct a new trip chain by removing trip ik from trip chain r*, denoted as ̃r. The charging strategy in trip chain ̃r, denoted 
as Ψ̃r is consistent with Ψr* , except for the first charging operation implemented later than the ending of trip ik. Without loss of 
generality, this charging operation is denoted as Ψm

r* , the mth charging operation in Ψr* , where the corresponding charging initial SoC 
and battery degradation rate are represented as SoCm

r* and ξm
r* , respectively. 

Case 1. SoCm
r* = SoCinit − mik 

The replenished electricity is mik in charging operation Ψm
r* . Then we have: 

ξm
r* = ξ

(
SoCm

r* , SoCinit
)

= ξ
(
SoCinit − mik , SoCinit

)
(21) 

In this scenario, the charging strategy Ψ̃r is obtained by removing mth charging operation from Ψr* . Therefore, the set of time steps 
occupied for charging operation in strategy Ψ̃r is a subset of that in strategy Ψr* . 

According to duality theory, we have: 

βt ≤ 0, ∀t ∈ T (22) 

Consequently, the cost term related to −
∑

t∈T
∑

i∈Iϕitβt in strategy Ψr* , denoted as −
∑

t∈T
∑

i∈Iϕitβt |Ψr* for short, is no smaller than 
that in Ψ̃r, denoted as −

∑
t∈T

∑
i∈Iϕitβt |Ψ̃r: 

−
∑

t∈T

∑

i∈I
ϕitβt|Ψr* ≥ −

∑

t∈T

∑

i∈I
ϕitβt|Ψ̃r (23) 

Then compare the reduced cost of trip chain r* and ̃r, we have: 

J[P4](r*,Ψr* ) − J[P4] (̃r, Ψ̃r)

= d
(
SoCinit − mik , SoCinit

)
− πik −

∑

t∈T

∑

i∈I
ϕitβt|Ψr* +

∑

t∈T

∑

i∈I
ϕitβt|Ψ̃r  

≥ d
(
SoCinit − mik , SoCinit

)
− πik  

≥ 0 (24) 

Hence, 

J[P4](r*,Ψr* ) ≥ J[P4] (̃r, Ψ̃r) (25) 

The above inequality is strict if there exists at least one time step t, such that:  

(i) βt < 0;  
(ii) BEB is charged in time step t in the mth charging operation of strategy Ψr* 

Therefore, we can conclude that Proposition 1 holds on in case 1. 
Case 2. SoCm

r* < SoCinit − mik 

The replenished electricity is larger than mik in charging operation Ψm
r* . According to Lemma 1, we have: 

ξm
r* = ξ

(
SoCm

r* , SoCinit
)
> ξ

(
SoCm

r* +mik , SoCinit
)

(26)  

and 

ξm
r* = ξ

(
SoCm

r* , SoCinit
)
> ξ

(
SoCinit − mik , SoCinit

)
(27) 

Compared with Ψr* , the charging duration of mth charging operation is shortened in the rebuilt charging strategy Ψ̃r, because trip ik 

is removed and less electricity is replenished. Similarly, we have: 
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−
∑

t∈T

∑

i∈I
ϕitβt|Ψr* ≥ −

∑

t∈T

∑

i∈I
ϕitβt|Ψ̃r (28) 

Then compare the reduced cost of trip chain r* and ̃r, the following in equation holds on: 

J[P4](r*,Ψr* ) − J[P4] (̃r, Ψ̃r)

= d
(
SoCm

r* , SoCinit
)
− d

(
SoCm

r* + mik , SoCinit
)
− πik −

∑

t∈T

∑

i∈I
ϕitβt|Ψr* +

∑

t∈T

∑

i∈I
ϕitβt|Ψ̃r  

= 2ξ
(
SoCm

r* , SoCinit
)
∙
(
SoCinit − SoCm

r*
)
∙(B − W)

/
χ − 2ξ

(
SoCm

r* + mik ,SoCinit
)
∙
(

SoCinit − SoCm
r* − mink

)
∙(B − W)

/
χ − πik

−
∑

t∈T

∑

i∈I
ϕitβt|Ψr* +

∑

t∈T

∑

i∈I
ϕitβt|Ψ̃r  

> 2ξ
(
SoCm

r* , SoCinit
)
mik∙(B − W)

/
χ − πik  

> 2ξ
(
SoCinit − mik , SoCinit

)
mik∙(B − W)

/
χ − πik  

= d
(
SoCinit − mik , SoCinit

)
− πik  

≥ 0 (29) 

Hence, 

J[P4](r*,Ψr* ) > J[P4]
(
r̃,Ψ

r̃

)
(30) 

Eq. (30) indicates that trip chain r* is not the optimal solution of pricing problem; i.e., trip ik should not be covered at optimality. 
Hence, Proposition 1 also holds on in case 2. ■ 

Proposition 1 implies that any node i ∈ I with node cost satisfying d(SoCinit − mi, SoCinit) − πi ≥ 0, could be excluded from the 
constructed network G, and the corresponding links are removed accordingly. Furthermore, if d(SoCinit − mi, SoCinit) − πi ≥ 0 for all 
i ∈ I, we have J*

[P4] ≥ 0 and the column generation procedure terminates. 
Upon the preprocessed network described above, we then design a label correcting algorithm by fully considering the unique 

features of pricing problem. The replenishment opportunities entail multiple labels at each node in the network. Specifically, a label at 
a node i ∈ I represents a partial path pi from the original depot O to the node i, and is measured by a two-dimensional vector: (the 
reduced cost of the path, final SoC of the path), denoted as (a(pi), S(pi)). Path pi records the decision-makings in terms of trip service 
sequence and corresponding charging strategy from the original depot O to the node i. Upon path pi, we can always construct the 
subsequent path from node i to destination depot D, and their combination forms a complete path from the original depot O to 
destination depot D, denoted as pi. 

To reduce the number of node labels and improve computational efficiency, we can readily present the dominance rule detailed in 
the following proposition, by making use of the monotonicity of battery aging function indicated in Lemma 1. Note that, the inte
gration of battery capacity fading mechanism and nonlinear charging profile distinguishes the pricing problem studied in our paper 
from traditional shortest path problem. Therefore, it should be further verified whether the widely-adopted multi-label correcting 
algorithm is still applicable for the pricing problem studied in our paper, including the design of multiple labels as well as the 
dominance rule, as what we will present in Proposition 2. 

Proposition 2. Give two partial paths from the original depot O to node i, pi,1 and pi,2, the labels of node i along paths pi,1 and pi,2 are 
(

a(pi,1), S(pi,1)
)

and 
(

a(pi,2), S(pi,2)
)

respectively. Label 
(

a(pi,1), S(pi,1)
)

dominates 
(

a(pi,2), S(pi,2)
)

, if both of the following conditions are 

satisfied: 

a
(
pi,1

)
≤ a

(
pi,2

)
(31a)  

S
(
pi,1

)
≥ S

(
pi,2

)
(31b)  

and at least one of above inequalities is strict. 

Proof. We will demonstrate that for any complete path pi,2 built upon pi,2, we can always construct a complete path pi,1 built upon pi,1, 
such that: 

a
(
pi,1

)
< a

(
pi,2

)
(32) 

Case 1. S
(
pi,1

)
= S(pi,2)

Then we have 
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a
(
pi,1

)
< a

(
pi,2

)
(33) 

In this scenario, given any complete path pi,2, pi,1 is built as follows: 
In pi,1, the subsequent covered trips and applied charging strategy after trip i are exactly same as that inpi,2. Obviously, the following 

inequality holds: 

a
(
pi,1

)
− a

(
pi,2

)

= a
(
pi,1

)
− a

(
pi,2

)

< 0 (34) 

Case 2. S
(
pi,1

)
> S

(
pi,2

)

In this scenario, given any complete path pi,2, pi,1 is built as follows: 
In pi,1, the subsequent covered trips and charge starting time after trip i are exactly same as that in pi,2. However, the inequality 

S
(

pi,1

)
> S

(
pi,2

)
indicates that in path pi,1, the initial charging SoC of the first charging operation implemented after trip i is higher 

than that in path pi,2, which results in shorter charging duration and lower cost incurred by battery degradation (see Lemma 1). 
Therefore, we can conclude that inequation (32) still holds in case 2. ■ 

According to the dominance rule implied in Proposition 2, a label no longer needs to be extended whenever it is dominated by 
another label. In the proposed multi-label correcting method, each node i is assumed to be associated with multiple labels which 
represent a partial path ending at trip i. At node i, label k is represented as lk(i) := [γk,κk,ak,Sk], where γk and κk are the node and label 
index that preceded label k and would be used to identify the traversed nodes of that path by back-tracking. Then label lk1 (i) dominates 
lk2 (i) if (1) ak1 ≤ ak2 ; and (2) Sk1 ≥ Sk2 , where at least one of above inequalities is strict. Meanwhile, Sk would also be used to identify 
the charging operation choice implemented before trip i by back-tracking: if Sk = SoCinit − mi, charging operation occurs between 
node/trip i and its preceded node; otherwise, node i and its preceded node are covered seamlessly without charging operation. 

Suppose we have a non-dominated label k at node i, represented as lk(i) = [γk,κk,ak,Sk], and there exists a link from node i to node j. 
Then extended from label lk(i), the following labels are generated at node j, depending on the charging operation choice:  

(1) Charging operation is not implemented between trip i and j, i.e., φi = 0: 

If the energy is sufficient to support trip j, i.e., Sk − mj ≥ SoC, then a label lu1 (j) = [i, k, ak − πj, Sk − mj] will be generated at node j;  

(2) Charging operation is implemented between trip i and j, i.e., φi = 1: 

If time permits, i.e., sj − si − ei ≥ g(Sk, SoCinit), then a label lu2 (j) = [i, k, ak − πj + d(Sk, SoCinit) −
∑

t∈Tϕitβt , SoCinit − mj] will be 
generated at node j. 

The above-mentioned label dominance and extension rule are placed into a framework of the general label-correcting algorithm to 
solve the pricing problem. Although the multi-label method works in a label correcting way, the ascending ordering of trips guarantees 
the generated labels are permanent even in a network with negative node cost. This feature greatly reduces the unnecessary label 
updating, and thus significantly improves the computational efficiency of the proposed label correcting method. It is also worth to note 
that, the proposed label dominance rule is only viable for the monotonicity of battery degradation function and analogous property still 
holds for other types of lithium-ion batteries, instead of being limited to LiFePO4 cells. Therefore, the proposed method is also 
applicable for the scheduling of BEBs equipped with other types of lithium-ion batteries. 

4.1.3. Column generation stabilization 
A major difficulty in column generation may be the slow convergence when the solution is near the optimum, which is called the 

tailing-off effect. To mitigate this effect, we use a dual stabilization approach (Addis et al., 2012; Wang et al., 2018). Initially, we set 

Ω :=

{

πi, βt |i ∈ I, t ∈ T
}

as vector 0. At each iteration of the column generation procedure, we obtain a dual vector by solving model 

[P3], denoted as Ω := {πi, βt |i ∈ I, t ∈ T}; then we use a modified dual vector Ω̃ as input parameters for the pricing subproblem [P4]: 

Ω̃ = ρ∙Ω + (1 − ρ)∙Ω, ρ ∈ [0, 1] (35) 

For a given ρ (set as 0.6 initially in this paper), the column procedure is executed until no columns can be added to model [P3]. Then 
we update Ω ← Ω̃, and increase ρ (by 0.1 in this paper) for a new iteration of the above process. The column procedure terminates when 
ρ = 1 and no columns can be added. 

Meanwhile, our preliminary experiments show that selecting multiple trip chains with negative reduced cost when solving pricing 
problem is helpful for speeding up the column generation procedure in BEB scheduling. Therefore, to accelerate the column generation 
process, we add several columns to the RMP in each iteration. To be specific, at destination depot, all the labels lk(D) satisfying ak < 0 
are preserved and the corresponding trip chains are all added to R’ in model [P3]. 
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4.2. Branching strategy and upper bounding 

Since the solution to the MP may not be integer, a B&B procedure is necessary to obtain optimal integer solutions. An intuitive 
approach is to branch on the variable λr. However, it would result in an imbalanced search tree. Therefore, we develop another 
branching strategy. 

If an optimal solution to the MP is not integer, then there must exist a pair of trips i, j ∈ I such that 0 <
∑

r∈Rδijλr < 1 (Desrochers 
and Soumis, 1989). Then branching is applied on a fractional 

∑
r∈Rδijλr, where we always select the largest fractional 

∑
r∈Rδijλr to 

branch. The underlying network is changed according to 
∑

r∈Rδijλr = 1 or 
∑

r∈Rδijλr = 0. For each pair of trips that should be excluded, 
we will delete the corresponding link in the network, while for each pair of trips that should be included, we will retain the corre
sponding link and delete all the other links originating from the tail of the corresponding link or heading to the head of the corre
sponding link. To obtain a feasible solution quickly, we select the node with minimum lower bound (LB) in node list. Meanwhile, when 
selecting a node on the same level, we always select the node with 

∑
r∈Rδijλr = 1. We can also pre-specify a relative optimality 

tolerance level ε, 0 < ε < 1, for controlling the gap associated with branching. If the incumbent best upper bound on model [P1] is UB 
(i.e., the objective value of model [P1] for the best integer solution obtained) and the optimal objective value of MP in a branch is not 
smaller than UB/(1+ε), then the branch can be pruned. The B&P approach provides an ε-optimal solution. 

To reduce the tree size of B&B search, we also develop a heuristic algorithm based on the CG procedure to generate good upper 
bounding. In the proposed heuristic algorithm, the inner procedure is the CG procedure described in Section 4.1; the outer procedure is 
the selection strategies used to obtain an integer solution. 

Firstly, we modify constraint (16c) in model [P1] as: 
∑

r∈R
Ur

t λr ≤ Ct, ∀t ∈ T (36) 

Initially, Ct is constant and equal to C. Then the available number of charging facilities at each time step may decrease as the outer 
procedure proceeds in our heuristic algorithm. To be specific, every time the inner CG procedure stops, we select the feasible trip with 
the largest value of the decision variables λr. Then update Ct and I for a new iteration of the above process:  

(i) if BEB is charged in time step t according to the selected trip chain, update Ct ← Ct − 1;  
(ii) if trip i is covered in the selected trip chain, update I ← I\{i}; 

The algorithm terminates when all the trips are covered. 

4.3. Framework of a branch-and-price algorithm 

In this section, we illustrate the framework of the B&P algorithm as follows. This framework combines the CG procedure and a B&B 
tree. 

Step 0: Define the relative optimality tolerance of branching as ε. Clear the current node list of the B&B tree; set the RMP with the 
initial set of feasible trip chains as the current parent node; and set UB as the corresponding optimal objective value and x* as the 
optimal solution. The UB is used to record the incumbent best objective value and the x* is used to record the incumbent best feasible 
solution. 

Step 1: Solve MP of current parent node by CG. The solution and the objective of MP of current parent node are denoted by x and 
LpObj(x), respectively. 

Step 1.1: if x is an integer solution and LpObj(x) < UB, update UB ← LpObj(x), x* ← x, prune this node, and go to step 3; if x is an 
integer solution and LpObj(x) ≥ UB, prune this node, and go to step 3; 
Step 1.2: if x is not an integer solution and LpObj(x) < UB/(1 + ε), update UB using the heuristic algorithm presented in Section 
4.2 and go to step 2; if x is not an integer solution and LpObj(x) ≥ UB/(1+ ε), prune this node, and go to step 3. 

Step 2: Choose the branching variable and branch the current parent node into two child nodes (i.e., a left child node and a right 
child node) as described in Section 4.2. (the left child node ensures 

∑
r∈Rδijλr = 1, while the right child node ensures

∑
r∈Rδijλr = 0); 

activate the left child node as the new current parent node; add the right child node into the current node list and set its LB with the 
value of LpObj(x); then, go to step 1. 
Step 3: Mark all the nodes in current node list, satisfying that the node’s LB is no smaller than UB/(1 + ε), as inactive and remove 
them from the current node list. If the current node list is empty, stop the whole algorithm; otherwise, activate the node in the 
current node list with the lowest LB and set this node as the current parent node. Afterward, go to step 1. 

5. Performance of the solution approach 

Section 5.1 presents the parameter values used in numerical experiments. Section 5.2 evaluates the computational efficiency of our 
proposed solution approach. All the numerical instances in this paper are carried out via Matlab R2018b on an HP 2.11 GHz personal 
computer with 16 GB RAM. 
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Table 1 
Parameter definitions and values.  

Parameter Notation Value Unit 

Lower bound of battery level SoC  20 % 
Unit acquisition cost of a BEB (without battery) per day E  16.5 $ 
Battery capacity Q  162 kWh 
Battery acquisition cost B  28,000 $ 
Salvage value of battery W  2,800 $ 
EoL related threshold χ  0.2 – 
Coefficient for battery degradation model γ1  − 4.09e-4 – 

Coefficient for battery degradation model γ2  − 2.167 – 
Coefficient for battery degradation model γ3  1.418e-5 – 
Coefficient for battery degradation model γ4  6.13 – 
Maximum achievable SoC in CC phase S̃oC  80 % 

Maximum achievable SoC in CV phase ŜoC  100 % 

Time required to charge to S̃oC  t̃  2 hour 

Time required to charge to ŜoC  t̂  3 hour 

Optimality tolerance ε  0.01 –  

Table 2 
Scale of instance groups.  

Instance batch Duration of daily operation (hr) Unit of time step (min) No. of time steps No. of trips No. of charging facilities 

INB1 10 10 60 60 3 
INB2 12 10 72 80 5 
INB3 12 5 144 80 6 
INB4 12 5 144 120 8 
INB5 14 5 168 160 10  

Table 3 
Cost and runtimes of our proposed B&P solution approach.  

Instance Obj ($) Fleet size T_CPU Time (s) PP_CPU Time (s) PP/T_CPU Time #PP PP_CPU Time/#PP (s) #Node 

Batch ID 

INB1 1 594.2 23 104 11 11% 183 0.06 2  
2 599.1 23 102 11 11% 185 0.06 2  
3 637.0 25 106 11 10% 182 0.06 3  
4 586.9 24 95 9 9% 187 0.05 2  
5 589.4 23 106 11 10% 190 0.06 2 

INB2 6 713.6 30 224 54 24% 464 0.12 4  
7 744.1 29 291 72 25% 575 0.13 5  
8 709.6 27 204 45 22% 436 0.10 4  
9 696.7 28 363 87 24% 747 0.12 6  
10 762.1 31 257 64 25% 462 0.14 4 

INB3 11 715.6 30 268 67 25% 502 0.13 4  
12 730.3 30 268 61 23% 428 0.14 5  
13 678.5 28 301 65 22% 414 0.16 5  
14 727.7 30 249 49 20% 442 0.11 4  
15 704.7 30 393 96 24% 709 0.14 6 

INB4 16 1099.6 44 2503 722 29% 1676 0.43 6  
17 1168.3 47 2292 648 28% 1656 0.39 6  
18 1102.7 44 2188 693 32% 1881 0.37 9  
19 1046.6 42 2454 709 29% 1660 0.43 8  
20 1054.9 42 2566 766 30% 1579 0.49 7 

INB5 21 1148.4 47 6874 2475 37% 2526 0.98 10  
22 1126.8 46 6120 2264 37% 2695 0.84 9  
23 1287.9 49 7733 3171 41% 3109 1.02 8  
24 1257.1 49 8340 3253 39% 3128 1.04 10  
25 1304.8 49 7562 2798 37% 2945 0.95 7  
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5.1. Parameter values 

The technical parameters needed for this paper are obtained from Yutong ZK6850BEVG53 used in a number of cities in China, given 
in Table 1. Yutong ZK6850BEVG53 is a kind of medium BEB, with vehicle length as 8.5 m. The parameter values for battery capacity 
fading model (γ1, γ2, γ3 and γ4) are borrowed from Lam and Bauer (2012). The charging profile in CV phase F (t) is approximated by a 
piecewise linear function under normal charging mode (Montoya et al., 2017): 

SoC(t) =

⎧
⎨

⎩

0.4t t ∈ [0, 2)
0.8 + 0.25(t − 2) t ∈ [2, 2.2)

0.85 + 0.1875(t − 2.2) t ∈ [2.2, 3]
(37) 

Note that the proposed solution method is only viable for monotonicity of battery degradation function with regards to the SoC 
variations and is independent of exact mathematical form of battery charging profile. Our method is thus also applicable for the 
scenario where nonlinear charging profile is represented by a set of differential equations (Pelletier et al., 2017), and the same to the 
CP-CV nonlinear charging profile. 

5.2. Performance of branch-and-price solution approach 

In the computation experiments, we tested 5 batches of numerical instances with different scales as listed in Table 2. In order to 
generate the random instances, the departure time of each trip is an integer randomly chosen from interval [1, total number of time 
steps]. The travel distance of each trip is randomly chosen from the set {20,25,30,35,40,45} km. Given an average travel speed v =

17.5 km/hr, the travel duration of each trip is thus calculated as 
⌈

travel distance
vL

⌉

, where the units of time step L for each batch of 

numerical instances are summarized in Table 2. The energy consumption rate is assumed to be 1.35 kWh/km (Gao et al., 2017). The 
value of SoCinit is randomly selected from the set {75%,80%,85%, 95%, 100%}. 

The solution quality and computational time of the 5 batches of numerical instances are presented in Table 3; and each batch 
includes 5 instances with randomly generated trip starting time and travel duration. The relative optimality tolerance of branching ε is 
set as 0.01. As presented in Table 3, column 1 and 2 provide the problem instance; each row corresponds to the results obtained for the 
corresponding instance. Columns 3–10 present the computational results of the proposed B&P solution approach from several aspects, 
including the objective value of model [P1] (Obj), the optimal BEB fleet size, the CPU time to obtain the optimal solution (T_CPU 
Time), the total CPU time spend on solving pricing problem (PP_CPU Time), the ratio of PP_CPU time to T_CPU time (PP/T_CPU Time), 
the running times of pricing problem (#PP), the unit time for solving pricing problem (PP_CPU Time/#PP) and the number of nodes 
traversed (#Node). It is worth mentioning that the columns can be generated from two sources in our paper: multiple columns 
generated in each run of the pricing problem and construction of initial solution pools. Therefore, we present the running times of 

Fig. 7. Geographical distribution of selected bus lines departing from terminal station A.  
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pricing problem, instead of the number of generated columns, and the former one would be much less than the latter. 
According to the total CPU time in the table, we can see that, on average, the B&P approach can solve the media-size problems to 

optimality within 2.4 h. We also find that, the computational efficiency is largely and negatively affected by the number of trips, while 
it is less dependent on the number of time steps (compare the total CPU time of INB 2 and INB 3). Closer investigation of the solution 
processes unveils that the percentage of CPU time spent on solving pricing problem also increases as the size of problem grows, and the 
percentage is up to 41% in some cases, which also indicates that the efficiency of the B&P approach largely depends on the compu
tational efficiency of CG, i.e., the multi-label correcting method for pricing problem. The ratio of CPU time spent on pricing problem to 
the running times of pricing problem reflects the computational efficiency of the proposed multi-label correcting method. It can be seen 
that both the running times of pricing problem and the average computational time on each run of pricing problem increase apparently 
with the growing number of trips. It is worth to note that, the network preprocessing and dominance rule, as unveiled in Proposition 1 
and Proposition 2, play a vital role in speeding up the computational efficiency of CG procedure. To confirm the above claim, we 
further tested numerous instants without using these techniques (i.e., as benchmark for comparisons), and found that the computa
tional efficiency without these techniques is consistently much slower than that with these techniques; and the computational 
advantage increases as the problem size grows. For scale instance INB5, the benchmark approach could not converge within 24 h, 
while our approach still could find the optimal solution within acceptable runtimes (less than 2.4 h), see the fifth column in Table 3. 
The details are omitted for brevity. Thanks to this advantage, the proposed method can be used to solve larger-scale problems with 
more service routes, and with a finer decision-making time scale (e.g., 5 min or less) within only moderate runtimes. 

6. Numerical case studies 

To validate our model, in this section we focus on a real-life case study arising from a major city in China. We consider a major bus 
terminal within the city, denoted as terminal station A. Departing from terminal station A, six yet-to-be-electrified lines are studied, 
namely line 17, 19, 20, 21, 22 and 25, as presented in Fig. 7. These six lines exhibit considerably high heterogeneity, in terms of both 
lengths and travel duration. To be specific, the lengths of the six lines are 11 km, 11.5 km, 12.6 km, 19.3 km, 16 km and 16.8 km 
respectively. Their travel durations (terminal to terminal) are 80 min, 90 min, 105 min, 150 min, 120 min and 130 min respectively. 

Table 4 
Timetables for selected bus lines, departing from terminal station A.  

Line 17 Line 19 Line 20 Line 21 Line 22 Line 25 

07:00:00 06:10:00 07:00:00 06:20:00 06:30:00 06:40:00 
07:20:00 Every 20 min 07:30:00 Every 30 min Every 30 min 07:10:00 
07:40:00 09:10:00 08:00:00 18:50:00 17:30:00 07:40:00 
Every 15 min Every 30 min Every 15 min   Every 20 min 
10:40:00 15:10:00 14:15:00   18:20:00 
Every 30 min Every 20 min 14:45:00   18:50:00 
16:40:00 19:10:00 15:15:00   19:20:00 
Every 15 min  Every 15 min   19:50:00 
19:25:00  20:30:00     

Fig. 8. Effects of the number of charging facilities on the optimal costs (1: considering battery aging; 2: without considering battery aging).  
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The timetables for these six lines are shown in Table 4. We use the piecewise linear charging function specified in Section 5.1, and the 
parameter values specified in Table 1 to conduct the following numerical cases. In this section, the relative optimality tolerance of 
branching ε is set as 0.05 for the purpose of computation efficiency. 

First, we optimize the BEB service and charging schedule under a range of charging station capacity: C ∈ [5,20], where SoCinit is set 
as 95%. The optimal total operational cost and the cost components are plotted against C as the solid curve presented in Fig. 8. The 
figure shows that the optimal total cost (the solid curve with circle markers, named total cost 1) decreases as C increases, until it 

Fig. 9. Effects of the number of charging facilities on charging strategy.  

Fig. 10. SoC distribution of selected BEBs.  
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reaches a threshold of 18, as marked by the vertical dashed curve on the right-hand side of Fig. 8. This threshold represents the 
maximum number of charging facilities needed for BEBs at terminal station A; i.e., any additional charging facilities would be 
redundant, and the optimal total cost would stay the same ($1.083× 103). 

The figure also shows that the cost incurred by bus acquisition (the diamond-marked solid curve, denoted as bus acquisition cost 1 
for short) also decreases as C increases, which is expected. When more charging facilities are available, the waiting time of BEBs for 
charging at terminal station would reduce and the charging opportunity increases. Therefore, less BEBs are required to finish the 
predefined trip service. Meanwhile, the cost incurred by battery degradation (the square-marked solid curve, denoted as battery aging 
cost 1) also diminishes as C increases. This is because the SoC variation negatively affects battery aging rate: the larger the SoC 
variation is, the faster the battery degrades. Hence, when the charging facilities are relatively sufficient, the BEBs tend to be charged as 
frequently as possible, to achieve more cost saving by extending batteries’ lifespan. 

To examine the significance of taking battery health into consideration in BEB scheduling optimization framework, we also 
compare the above total cost and cost components against those for BEB scheduling without considering the cost incurred by battery 
aging, which is defined as scenario 2 from now on and plotted as the dashed curves in Fig. 8. Comparison reveals a total cost saving of 
10.1–27.3% from battery management for C ∈ [5,20]. If battery degradation is ignored in the optimization model, the major constraint 
for BEB scheduling lies in the limited charging facilities. The nonlinear charging profile indicates distinct charging efficiency when 
initiating charging at different SoC levels. To be specific, the deeper the depth of battery discharge is (i.e., larger SoC variation), the 
higher the charging efficiency is. Therefore, when the number of charging facilities is limited, BEB would be charged as late as possible. 
This charging strategy entails smaller fleet size of BEBs (the diamond-marked dashed curve, denoted as bus acquisition cost 2), while it 
accelerates the battery aging process and results in higher cost incurred by battery capacity fading (the square-marked dashed curve, 
denoted as battery aging cost 2). Specifically, battery aging cost is reduced by 35.1–61.6% by incorporating battery health consid
erations into the optimization framework of BEB scheduling. 

The average SoC variation under each scenario and the corresponding battery capacity fading rate are plotted in Fig. 9a and b 
respectively. Here, we use the battery capacity fading rate corresponding to the average SoC variation to predict the battery’s lifespan 
approximately. In both scenarios, the average SoC variation decreases as the number of charging facilities increases, and the same to 
the corresponding battery capacity fading rate. Further comparison between these two scenarios reveals that the average SoC variation 
is decreased by 20.6–51.3% for C ∈ [5,18] from battery health considerations. The average battery fading rate in scenario 1 is only 
51.1–67.9% of that in scenario 2, indicating that the battery’s service life can be extended by additional 47.2–96.1% approximately. 
This comparison further verifies the significance of battery management in BEB scheduling. 

The difference of average SoC variations in the above two scenarios is further explained by Fig. 10, where the SoC curve of in
dividual BEB against the time of day under each scenario is plotted. Due to limited space, we only present the SoC curves of four 
selected BEBs from the BEB fleet, where the capacity of charging facilities is set as 12, and SoCinit equals 95%. The blue dashed curve at 
the top of each figure indicates the value of SoCinit , while the red dashed curve at the bottom of each figure represents the predefined 
minimal SoC value (i.e., SoC) to relax drivers from the range anxiety. Fig. 10 unveils considerable differences in terms of charging 
frequency and cycling SoC swing under two scenarios, which is consistent with the findings obtained from Figs. 8 and 9. In addition, we 
also find that, due to limited charging facilities, BEBs usually wait for a while before the charging operation. 

Upon the above discussions, the operators are recommended to buy a few additional BEBs so that the lifespan of batteries can be 
extended by constraining the SoC within a narrow range and the total operational cost of BEB fleet can be saved to some extent. It is 
worth to note that, this finding is highly related to the proportion of battery packs’ cost relative to BEBs’ cost, instead of the absolute 

Fig. 11. Daily cost saving and optimal fleet size under various cost structures.  
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price of either battery packs or BEBs (in our paper, the percentage equals 27.9%). However, the percentage of battery cost may vary 
from case to case, depending on the type of studied BEB instances. Therefore, we further study the daily cost saving as well as fleet size 
under various cost structures. To this end, we gradually improve the unit acquisition cost of bus (without battery) per day, E, and keep 

Fig. 12. Effects of SoCinit on the optimal costs.  

Fig. D1. Lifecycle cost saving under various annual reduction rates of battery cost.  

Fig. D2. Effect of the number of charging facilities on the threshold value γ.  
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other parameters unchanged, so that the percentage of battery cost decreases progressively; and re-examine the cost saving and the 
optimal fleet size. The results are summarized in Fig. 11, where the number of charging facilities is set as 12 and SoCinit equals 95%. As 
expected, the benefit brought by battery management becomes less significant (the circle-marked solid curve) as the percentage of 
battery cost declines. However, a total cost saving of over 8.5% can still be achieved even if the percentage declines to 10%. Further 
investigation unveils that, as the proportion of battery-related cost declines, the optimal fleet size also decreases gradually (the 
diamond-marked solid curve), until it closely approaches to or equals the fleet size where battery aging is ignored in the optimization 
framework (the dashed curve at the bottom of the figure). It indicates that if the battery-related cost component takes only a small 
proportion of the total, the operators prefer to buy less additional buses and replace batteries more frequently due to their relatively 
low acquisition cost. 

Besides cost stuctures, the declining trend in battery cost is another important concern. As revealed in our paper, the lifespan of 
batteries is prolonged at the cost of more BEBs involved. Meanwhile, we also note that with the development of technology, the price of 
battery packs has been descending gradually over the past years and will continuously come down in the future. Thus, battery 
management problem seems to be a less-important concern as compared to the fleet size issue from the long-term perspective. 
However, that is not the case. Actually, incorporating battery management into BEB scheduling can bring a certain number of cost 
saving from both short-term and long-term perspective, even though the price of battery packs is expected to decline in the near future. 
An idealized model is introduced to manifest that and the details are relegated to Appendix D for brevity. 

Last, we investigate the optimal costs under various initial SoCs, SoCinit ∈ [70%,100%]. The optimal cost and cost components are 
plotted in Fig. 12, where the number of charging facilities is set as 12. The figure shows that the total cost and all the cost components 
increase as the SoCinit grows. The cost incurred by battery degradation increases as the battery capacity fading rate is negatively 
affected by average SoC level. Larger SoCinit indicates higher average SoC level, thereby speeding up the battery degradation and 
resulting in the growth of battery aging cost. Meanwhile, to compete against this negative effect, the SoC range would be further 
narrowed, which causes a larger fleet size, i.e., the bus acquisition cost gradually grows as SoCinit increases. In addition, the increasing 
trend of BEB fleet size is also a natural result of nonlinear charging profile. To be specific, the charging efficiency keeps constant when 
SoCinit ≤ S̃oC (here S̃oC is equal to 80%). However, when SoCinit > S̃oC, the charging efficiency decreases as SoCinit increases. There
fore, the fleet size keeps constant at beginning and then gradually grows as the SoCinit increases to 100%. 

7. Conclusions 

In this study, we investigate the optimal service and charge strategy of BEB fleet, by taking battery degradation and nonlinear 
charging profile into account. Based on the set partitioning model, a B&P approach was developed to find optimal solution. By making 
use of the electrochemical properties of batteries in BEBs, a multi-label correcting method is proposed to solve the essential pricing 
problem. The efficiency and applicability of the proposed solution method were evaluated by extensive numerical experiments with 
randomly generated instances and real case studies. Our work has extended the literature in the realm of BEB scheduling in multiple 
aspects. We are, to our best knowledge, the first to formulate and solve BEB scheduling problem that incorporates battery degradation 
mechanism into optimization framework. The inclusion of battery health considerations makes the decision-makings more compli
cated. Despite the added complexity, the media-sized problem can still be solved within reasonable runtimes, thanks to the multi-label 
correcting method used to solve the pricing problem. Note that, since all types of lithium-ion batteries embedded in BEBs exhibit 
similar electrochemical properties, the proposed solution method is also applicable for the scheduling of BEBs equipped with other 
kinds of lithium-ion batteries, instead of being limited to LiFePO4 battery cells. Meanwhile, our numerical case studies reveal a number 
of useful findings and the general findings hold on for BEBs charged under both CC-CV and CP-CV schemes. For example, the operators 
are encouraged to keep the initial SoC at a low level to achieve more cost saving. The results also show that by incorporating battery 
health considerations into BEB scheduling framework, the optimal total cost can be saved up to 10.1–27.3% and the battery’s service 
life can be extended by additional 47.2-96.1% approximately. 

In the future work, we would make more efforts to further improve our work, including relaxing the assumption of fixed initial SoC, 
considering multiple charging mode (e.g., fast charging and battery swapping) and extending the current single-terminal transit 
network to the multi-terminal one. Works in the above directions are under investigation now. 
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Appendix A. List of notations  

Notation Description 

Indices 
i, j  bus round-trips; 
t  time steps; 
r  trip chains;  

Decision variables 
δij ∈ {0,1} set to one if an BEB serves trips i and j consecutively, where trip i begins earlier than trip j (i.e., trip i immediately precedes trip j); and to zero 

otherwise,i ∈ I ∪ O, j ∈ I ∪ D, i ∕= j  
μit ∈ {0,1} set to one if BEB begins to charge in the time step t after trip i and before serving the subsequent trip; and to zero otherwise, i ∈ I, t ∈ T;  
φi ∈ {0, 1} set to one if the charging operation is implemented after trip i and before serving the subsequent trip; and to zero otherwise, i ∈ I, t ∈ T;  
ϕit ∈ {0, 1} set to one if BEB is charged in the time step t after trip i and before serving the subsequent trip; and to zero otherwise, i ∈ I, t ∈ T;  
ηit ∈ {0, 1} set to one if BEB ends charging in the time step t after trip i and before serving the subsequent trip; and to zero otherwise, i ∈ I, t ∈ T;  
λr ∈ {0, 1} set to one if trip chain r is selected; and zero otherwise,r ∈ R   

Parameters and other variables 
I  set of trips; 
T  set of time steps; 
R  set of all feasible trip chains; 
R’  subset of R;  
J  total operational cost 
Jr  total operational cost along trip chain r, r ∈ R  
si  departure time of trip i, i ∈ I;  
ei  travel time of trip i, i ∈ I;  
C  capacity of charging station; 
SoC  minimal SoC value to reduce range anxiety; 
mi  proportion of electricity consumed with respect to the maximum possible charge it can hold in trip i, i ∈ I;  
SoCinit  initial SoC of BEB at the very beginning of daily operation period; 
SoCi  SoC right at the end of trip i, i ∈ I;  
g1(SoCi,

SoCinit)

time required to charge from SoCi to SoCinit ;  

g(SoCi,SoCinit) number of time steps required to charge from SoCi to SoCinit ;  
zi  ready-to-departure time of BEB after finishing trip i, i ∈ I;  
M  sufficiently large number; 
E  a fixed cost term related to bus acquisition; 
Ψr  charging strategy of trip chainr, r ∈ R;
D(Ψr) battery degradation cost occurred in charging strategy Ψr;  
A(Ψr) battery charging fee occurred in charging strategy Ψr ;  
ξ  battery capacity fading rate 
B  unit battery acquisition cost; 
χ  EoL-related threshold; 
W  salvage value of battery; 
Hr

i  set to one if trip i is covered in trip chain r; and to zero otherwise, i ∈ I, r ∈ R;  
Ur

t  set to one if bus is charged at time step t in trip chain r; and to zero otherwise, t ∈ T, r ∈ R;  
πi  dual variables for constraint (19b), i ∈ I;  
βt  dual variables for constraint (19c), t ∈ T;  
F (t) charging profile in CV phase; 
F − 1  inverse function of F ;  
Icc  constant charging current; 
L  length of unit time; 
S(pi) final SoC of path pi  

a(pi) reduced cost of path pi  

A  battery capacity in the unit of Ah; 
Q  battery capacity in the unit of kWh; 
ϰ  unit electricity price 

ŜoC  maximum value of SoC achievable at the end of CV phase; 

S̃oC  maximum value of SoC achievable in CC phase; 

t̂  time required to charge to ŜoC;  
t̃  time required to charge to S̃oC;  
Pẗ,bat  number of batteries purchased at time ẗ  
Pẗ,bus  number of BEBs without batteries purchased at time ẗ  
Aẗ,bat  purchase cost of batteries at time ẗ  
Aẗ,bus  purchase cost of BEBs without batteries at time ẗ  

Sẗ,bat
T̈  salvage value of batteries at the end of planning horizon 

Sẗ,bus
T̈  salvage value of BEBs without batteries at the end of planning horizon 

T̈  planning horizon 

(continued on next page) 
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(continued ) 

Notation Description 

ϖ  reduction rate of battery cost 
CT̈,ẗ  capacity of batteries purchased at time ẗ, at the end of planning horizon  
γ  threshold value 
r  discount rate  

Appendix B. Derivation of Eq. (10a-c) 

In Lam and Bauer (2012), the capacity fading rate is calculated as follows: 

ξ
(
SoCik , SoCinit

)
= γ1SoCik ,dev∙eγ2SoCik ,avg + γ3eγ4SoCik ,dev (B1)  

where 

SoCik ,avg =
1

ΔAh

∫ Ahik

Ahik ,0

SoC(Ah)dAh (B2)  

SoCik ,dev =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
3

ΔAh

∫ Ahik

Ahik ,0

(
SoC(Ah) − SoCik ,avg

)2dAh

√

(B3)  

where Ahik ,0 is the initial amount of charged Ah before the SoCik ,avg determination, Ahik is the final amount of charged Ah in the charging 
period g(SoCik ,SoCinit), and ΔAh equals Ahik − Ahik ,0. SoC(Ah) represents the relationship between SoC and the processed Ah. Without 
loss of generality, SoC is assumed to be linearly increasing with the processed Ah (Lu et al., 2013): 

SoC = f (Ah) =
Ah
A

(B4)  

where A indicates the battery capacity in the unit of Ah. In the field of battery cells, the battery capacity, discharge and charge process 
can be described in the unit of either kWh or Ah. They are equivalent under rated voltage. Then SoCik ,avg and SoCik ,dev can be expressed 
as a function of SoCinit andSoCik : 

SoCik ,avg =
1

SoCinitA − SoCik A

∫ SoCinit A

SoCik A

Ah
A

dAh  

=
SoCinit + SoCik

2
(B5)  

SoCik ,dev =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
3

SoCinitA − SoCik A

∫ SoCinit A

SoCik A

(
Ah
A

− SoCik ,avg

)2

dAh

√

=

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅(
SoCinit − SoCik ,avg

)3
−
(
SoCik − SoCik ,avg

)3

SoCinit − SoCik

√

=
SoCinit − SoCik

2
(B6)  

Appendix C. Heuristic algorithm to generate initial trip chain set R’ 

The heuristic algorithm follows this logic: at beginning, the initial SoC of BEB is SoCinit when it departs from original depot O. Then 
the BEB will serve for the trip with the earliest departure time by now, denoted as i. After the BEB returns, check if the BEB could still 
serve for another trip satisfying the minimal battery level constraint or not. If so, choose the trip with the earliest departure time, 
denoted as j. Otherwise, choose available time steps (i.e., there exist available charging facilities) and charge bus until the battery level 
reaches to SoCinit. If still no trips can be served, connect the current trip to depot D, and save this trip chain in set R’. The algorithm is 
detailed as follows. 
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Algorithm C1. (Pseudocode to generate initial trip chain set R’)   

1 Initialize R’ = ∅;  
2 Sort the trips in set I in an ascending order in terms of their departure time;  
3 Do: 
4 i = I(1); %I(1) denotes the trip in set I with the earliest departure time  
5 Initialize S = (i) (i.e, δOi = 1), SoC = SoCinit − mi, ready-to-go = si + ei;  
6 I ← I\{i}; %exclude trip i from setI  
7 Do: 
8 Find the set of trips J1, satisfying (i) sj ≥ ready-to-go; (ii) SoC − mj ≥ SoC;  
9 Find the set of trips J2, satisfying sj ≥ ready-to-go;  
10 If J1 ∕= ∅  
11 Select the trip with the earliest stating time in J1, denoted as j;  
12 S ← (S, j), i.e., δij = 1; %trip j will be served after tripi  
13 I ← I\{j}; SoC ← SoC − mj; i ← j;  
14 ready-to-go = sj + ej;  
15 ElseIf J2 = = ∅  
16 S ← (S,D) (i.e., δiD = 1); R’ ← {R’, S};j ← D;  
17 Update the number of available charging facilities at each time step; 
18 Else 
19 SoC ← SoCinit ;  
20 Find g(SoC, SoCinit) continuous available time steps after trip i;  
21 Update ready-to-go; 
22 End If 
23 Untilj = = D  
24 Until I = = ∅.    

Appendix D. An idealized model to manifest the significance of battery management from the life-cycle perspective 

In the idealized model, we borrow the insights unveiled in Section 6 directly. To be specific, for the real-life case study conducted in 
Section 6, when the number of charging facilities installed at terminal station is 12: the optimal fleet size is 55 (see Fig. 8) and the 
average SoC variation of BEBs is 32% (see Fig. 9(a)) (named as fleet 1 from now on), if battery aging is jointly considered in the 
optimization framework; otherwise, the optimal fleet size and the corresponding average SoC variation are 47 and 49.7% respectively 
(named as fleet 2 from now on). It is assumed that BEBs are charged whenever its SoC variation reaches to the average one in each 
scenario. 

We next study whether battery management is still a cost-efficient choice or not in the long term, given that the price of battery 
packs is certain to fall down over the following years. To this end, we compare the lifecycle cost of these two fleets (i.e., fleet 1 and fleet 
2) over a relatively long planning horizon T̈, including the purchase costs of batteries and vehicles (i.e., BEBs without batteries), and 
their salvage values, as presented in Eq. (D1). Here, batteries and vehicles are considered separately due to their different lifespans. The 
batteries installed on the BEBs will be replaced by the new ones if they reach to EoL, and the same to the vehicles. When either the 
battery or vehicle reaches to EoL, its salvage value is set as 0 for simplicity (i.e., ignoring their second-life application). Therefore, we 
only concern their salvage values at the end of planning horizon, as shown in Eq. (D1). Since the salvage value is usually a minor part as 
compared to the purchase cost, this idealization would not affect the value of findings revealed in the following paragraphs. 

J =
∑T̈

ẗ=1

Pẗ,busAẗ,buse− rẗ +
∑T̈

ẗ=1

Pẗ,batAẗ,bate− rẗ −
∑

ẗ=1
T̈ Pẗ,busSẗ,bus

T̈ e
− rT̈

−
∑

ẗ=1
T̈ Pẗ,batSẗ,bat

T̈ e
− rT̈

(D1)  

where ẗ is the time index; Pẗ,bat and Pẗ,bus indicate the number of batteries and vehicles purchased at time ẗ respectively; Aẗ,bat and Aẗ,bus 

represent the purchase cost of batteries and BEBs without batteries at time ẗ respectively; and Sẗ,bat
T̈ and Sẗ,bus

T̈ denote their corre
sponding salvage values at the end of planning horizon, which are purchased at time ẗ; and r is the discount rate. Here, r is set as 0.07/ 
12, with the time unit as one month. Also note that, the operation cost of BEB fleet is ignored in the calculation of lifecycle cost, as the 
operation cost, depended on service demand, keeps same for the two fleets. 

In the idealized model, the battery cost is assumed to fall down exponentially with respect to the time: 

Aẗ,bat = (1 − ϖ)(
ẗ− 1)/12A1,bat ∀2 ≤ ẗ ≤ T̈ (D2)  

0 < ϖ < 1 (D3)  

where ϖ denotes the annual reduction rate of battery cost. It is worth to note that, if the battery cost function is defined in other 
mathematical forms, e.g., a linear function of time, similar insights unveiled in the following paragraphs sill hold on. 

The salvage value of a battery is defined as a function of its current capacity: 

Sẗ,bat
T̈ = max

{
0,Aẗ,bat

(
CT̈,ẗ − βQ

)/
(χQ)

}
(D4) 
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where CT̈,ẗ denotes at the end of planning horizon T̈, the capacity of batteries purchased at time ẗ; and β equals 1 − χ. When the battery 
reaches to EoL, its salvage value is set as 0; otherwise, it is set to be the initial battery acquisition cost multiplied by the percentage of 
remaining effective capacity, where the term χQ indicates effective battery capacity, and CT̈,ẗ − βQ denotes the remaining effective 
capacity. The battery capacity is updated according to its cumulative utilization, where the total daily demand of BEB fleet in the unit 
of kilometer keeps consistent with that in Section 6; see Table 4. Meanwhile, the average battery energy consumption per kilometer 
[kWh/km] is 1.35 kWh/km, borrowed from Gao et al. (2017). The battery degradation mechanism and the corresponding parameter 
values are given in Section 2.2 and Section 5.1, respectively. Since the reference service life of vehicles is 12 years (Lajunen, 2018), we 
also set the planning horizon as 12 years for simplicity (i.e., T̈ = 144). Then, at the end of planning horizon, the salvage value of BEBs 

without batteries (term 
∑

ẗ=1
T̈Pẗ,busSẗ,bus

T̈e
− rT̈

) can be omitted. 
The lifecycle cost savings against annual reduction rate ϖ are plotted in Fig. D1, where the lifecycle cost saving in percentage is 

defined as: 

[lifecycle cost of fleet without considering battery aging] − [lifecycle cost of fleet with considering battery aging]
[lifecycle cost of fleet without considering battery aging]

A positive cost saving indicates that incorporating battery management into BEB scheduling problem can result in a total cost 
saving over the given planning horizon. The figure shows that the percentage of lifecycle cost saving decreases as the annual reduction 
rate ϖ increases, which is expected. Theoretically, the faster the cost of battery packs declines, the more cost can be saved by pur
chasing batteries as late as possible, which can offset against the benefit brought by battery management to some extent. It is worth to 
note that the cost saving keeps positive until the annual reduction rate ϖ reaches to a threshold of 0.16, as marked by the red circle 
marker and denoted as γ from now on. When ϖ is smaller than the threshold value, a certain number of cost saving (up to 13.4%) can be 
achieved by involving battery management into fleet size decision problem from the life-cycle perspective. However, the lifecycle cost 
of fleet with considering battery aging would exceed that without considering battery aging, if the annual reduction rate ϖ is larger than 
the threshold value γ. 

We next study the effect of the number of charging facilities on the threshold value γ, as presented in Fig. D2. When the number of 
charging facilities increases from 5 to 12, γ fluctuates within a small range [0.16, 0.25]. After that, the threshold value gradually grows 
as the number of charging facilities increases, until the number of charging facilities reaches to 18, as marked by the vertical dashed 
curve on the right-hand side of Fig. D2. This is because the maximum number of charging facilities needed is 18 when battery 
management is considered in the optimization framework, and the number is 12 in the other scenario, see Fig. 8 in Section 6. Then, the 
lifecycle cost of BEB fleet in both scenarios (with and without considering battery aging) as well as their difference would stay the same 
if the capacity of charging facilities exceeds 18. We note that, the threshold value γ is no smaller than 0.16 and may be up to 0.51 when 
the charging facilities are relatively enough. However, currently, the expected annual reduction rate of battery cost is less than 0.15 
(Lutsey and Nicholas, 2019). Therefore, incorporating battery management into BEB scheduling can bring a certain number of cost 
saving from both short-term and long-term perspective. These further verify the significant practical values of battery management. 
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