169 research outputs found

    A new virtual-flux-vector based droop control strategy for parallel connected inverters in microgrids

    Get PDF

    The Tat protein of human immunodeficiency virus-1 enhances hepatitis C virus replication through interferon gamma-inducible protein-10

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Co-infection with human immunodeficiency virus-1 (HIV-1) and hepatitis C virus (HCV) is associated with faster progression of liver disease and an increase in HCV persistence. However, the mechanism by which HIV-1 accelerates the progression of HCV liver disease remains unknown.</p> <p>Results</p> <p>HIV-1/HCV co-infection is associated with increased expression of interferon gamma-induced protein-10 (IP-10) mRNA in peripheral blood mononuclear cells (PBMCs). HCV RNA levels were higher in PBMCs of patients with HIV-1/HCV co-infection than in patients with HCV mono-infection. HIV-1 Tat and IP-10 activated HCV replication in a time-dependent manner, and HIV-1 Tat induced IP-10 production. In addition, the effect of HIV-1 Tat on HCV replication was blocked by anti-IP-10 monoclonal antibody, demonstrating that the effect of HIV-1 Tat on HCV replication depends on IP-10. Taken together, these results suggest that HIV-1 Tat protein activates HCV replication by upregulating IP-10 production.</p> <p>Conclusions</p> <p>HIV-1/HCV co-infection is associated with increased expression of IP-10 mRNA and replication of HCV RNA. Furthermore, both HIV-1 Tat and IP-10 activate HCV replication. HIV-1 Tat activates HCV replication by upregulating IP-10 production. These results expand our understanding of HIV-1 in HCV replication and the mechanism involved in the regulation of HCV replication mediated by HIV-1 during co-infection.</p

    HPV16 E7 oncoprotein test as a triage strategy for HPV16-positive women in cervical cancer screening: long-term follow-up outcome

    Get PDF
    BackgroundColposcopy is recommended once human papillomavirus (HPV)16/18 infection is detected. However, not all HPV16/18-positive women will necessarily develop cervical lesions. Therefore, this study aimed to investigate the application of quantitative HPV16 E7 oncoprotein detection as a cervical cancer screening method for more efficient screening while minimizing unnecessary colposcopy.MethodsE7 oncoprotein (HPV16) was quantitatively detected in cervical exfoliated cells of HPV16-positive women. The levels of HPV16 E7 oncoprotein in different degrees of cervical lesions were compared, and the optimal cut-off value for identifying HSIL+ was determined by receiver operating characteristic (ROC) curve analysis. With a pathological diagnosis as the gold standard, the sensitivity (SEN), specificity (SPE), positive predictive value (PPV), negative predictive value (NPV), and Kappa value were calculated to verify the diagnostic value of the method. Women diagnosed with low-grade squamous intraepithelial lesions (LSIL) and normal women were followed up for 5 years to evaluate the predictive value of HPV16 E7 protein for disease progression/persistent infection.ResultsThe expression level of HPV16 E7 oncoprotein was positively correlated with the degree of the cervical lesion (r = 0.589, P &lt; 0.01). The area under the ROC curve (AUC) was 0.817 (confidence interval: 0.729–0.904). The cut-off value of E7 oncoprotein for identifying HSIL+ was 8.68 ng/ml. The SEN, SPE, PPV, NPV, and Kappa values of HPV16 E7 oncoprotein for the identification of HSIL+ were 87.1%,70.0%, 87.1%, 70.0%, and 0.571, respectively, which were higher than those of ThinPrep cytology test (TCT). The SEN, SPE, PPV, and NPV of HPV16 E7 oncoprotein in predicting disease progression/persistent infection were 93.75%, 91.30%, 88.24%, and 95.45%, respectively.ConclusionThe quantitative detection of HPV 16 E7 oncoprotein can not only accurately screen cervical lesions but also achieve efficient colposcopy referral. Additionally, HPV16 E7 oncoprotein can accurately predict the progression of cervical lesions and persistent HPV infection

    Baculovirus Surface Display of SARS Coronavirus (SARS-CoV) Spike Protein and Immunogenicity of the Displayed Protein in Mice Models

    Get PDF
    ABSTRACT The baculovirus surface display technique has provided an ideal tool to display foreign proteins with natural conformation, functions, and immunogenicity. In this work, we explored the application of this technique on SARS-associated coronavirus (SARS-CoV) spike (S) protein, and further analyzed the immunogenicity of displayed S protein. The entire ectodomain of S protein was fused between the gp64 signal peptide and the VSV-G membrane anchor and successfully displayed on the baculovirus surface. Subcutaneous injection with purified S-displayed baculoviruses without adjuvant elicited highly effective production of specific and neutralizing antibodies against S protein in mice. These results confirmed a successful surface display of S protein on baculoviruse, and suggested a potential role of S-displayed baculoviruses as a novel live virus-based vaccine candidate for SARS-CoV
    • …
    corecore