27,252 research outputs found

    Laser Pulse Sharpening with Electromagnetically Induced Transparency in Plasma

    Full text link
    We propose a laser-controlled plasma shutter technique to generate sharp laser pulses using a process analogous to electromagnetically-induced transparency in atoms. The shutter is controlled by a laser with moderately strong intensity, which induces a transparency window below the cutoff frequency, and hence enables propagation of a low frequency laser pulse. Numerical simulations demonstrate it is possible to generate a sharp pulse wavefront (sub-ps) using two broad pulses in high density plasma. The technique can work in a regime that is not accessible by plasma mirrors when the pulse pedestals are stronger than the ionization intensity

    Liquid-core low-refractive-index-contrast Bragg fiber sensor

    Full text link
    We propose and experimentally demonstrate a low-refractive-index-contrast hollow-core Bragg fiber sensor for liquid analyte refractive index detection. The sensor operates using a resonant sensing principle- when the refractive index of a liquid analyte in the fiber core changes, the resonant confinement of the fiber guided mode will also change, leading to both the spectral shifts and intensity changes in fiber transmission. As a demonstration, we characterize the Bragg fiber sensor using a set of NaCl solutions with different concentrations. Strong spectral shifts are obtained with the sensor experimental sensitivity found to be ~1400nm/RIU (refractive index unit). Besides, using theoretical modeling we show that low-refractive-index-contrast Bragg fibers are more suitable for liquid-analyte sensing applications than their high-refractive-index-contrast counterparts.Comment: 3 pages, 4 figure

    Magnetohydrodynamic normal mode analysis of plasma with equilibrium pressure anisotropy

    Full text link
    In this work, we generalise linear magnetohydrodynamic (MHD) stability theory to include equilibrium pressure anisotropy in the fluid part of the analysis. A novel 'single-adiabatic' (SA) fluid closure is presented which is complementary to the usual 'double-adiabatic' (CGL) model and has the advantage of naturally reproducing exactly the MHD spectrum in the isotropic limit. As with MHD and CGL, the SA model neglects the anisotropic perturbed pressure and thus loses non-local fast-particle stabilisation present in the kinetic approach. Another interesting aspect of this new approach is that the stabilising terms appear naturally as separate viscous corrections leaving the isotropic SA closure unchanged. After verifying the self-consistency of the SA model, we re-derive the projected linear MHD set of equations required for stability analysis of tokamaks in the MISHKA code. The cylindrical wave equation is derived analytically as done previously in the spectral theory of MHD and clear predictions are made for the modification to fast-magnetosonic and slow ion sound speeds due to equilibrium anisotropy.Comment: 19 pages. This is an author-created, un-copyedited version of an article submitted for publication in Plasma Physics and Controlled Fusion. IOP Publishing Ltd is not responsible for any errors or omissions in this version of the manuscript or any version derived from i
    • …
    corecore