1,544 research outputs found

    The kHz QPOs as a probe of the X-ray color-color diagram and accretion-disk structure for the atoll source 4U 1728-34

    Full text link
    We have taken the kHz QPOs as a tool to probe the correlation between the tracks of X-ray color-color diagram (CCD) and magnetosphere-disk positions for the atoll source 4U 1728-34, based on the assumptions that the upper kHz QPO is ascribed to the Keplerian orbital motion and the neutron star (NS) magnetosphere is defined by the dipole magnetic field. We find that from the island to the banana state, the inner accretion disk gradually approaches the NS surface with the radius decreasing from r ~33.0km to ~15.9 km, corresponding to the magnetic field from B(r) ~4.8*10^6 G to ~4.3*10^7 G. In addition, we note the characteristics of some particular radii of magnetosphere-disk -r are: firstly, the whole atoll shape of the CCD links the disk radius range of ~15.9 - 33.0 km, which is just located inside the corotation radius of 4U 1728-34 -r_co ( ~34.4 km), implying that the CCD shape is involved in the NS spin-up state. Secondly, the island and banana states of CCD correspond to the two particular boundaries: (I)-near the corotation radius at r ~27.2 - 33.0 km, where the source lies in the island state; (II)-near the NS surface at r ~15.9 - 22.3 km, where the source lies in both the island and banana states. Thirdly, the vertex of the atoll shape in CCD, where the radiation transition from the hard to soft photons occurs, is found to be near the NS surface at r ~16.4 km. The above results suggest that both the magnetic field and accretion environment are related to the CCD structure of atoll track, where the corotation radius and NS hard surface play the significant roles in the radiation distribution of atoll source.Comment: 6 pages, 3 figures, 1 table, accepted by Astronomy & Astrophysic

    SIRT3 Protects Rotenone-induced Injury in SH-SY5Y Cells by Promoting Autophagy through the LKB1-AMPK-mTOR Pathway.

    Get PDF
    SIRT3 is a class III histone deacetylase that modulates energy metabolism, genomic stability and stress resistance. It has been implicated as a potential therapeutic target in a variety of neurodegenerative diseases, including Parkinson's disease (PD). Our previous study demonstrates that SIRT3 had a neuroprotective effect on a rotenone-induced PD cell model, however, the exact mechanism is unknown. In this study, we investigated the underlying mechanism. We established a SIRT3 stable overexpression cell line using lentivirus infection in SH-SY5Y cells. Then, a PD cell model was established using rotenone. Our data demonstrate that overexpression of SIRT3 increased the level of the autophagy markers LC3 II and Beclin 1. After addition of the autophagy inhibitor 3-MA, the protective effect of SIRT3 diminished: the cell viability decreased, while the apoptosis rate increased; α-synuclein accumulation enhanced; ROS production increased; antioxidants levels, including SOD and GSH, decreased; and MMP collapsed. These results reveal that SIRT3 has neuroprotective effects on a PD cell model by up-regulating autophagy. Furthermore, SIRT3 overexpression also promoted LKB1 phosphorylation, followed by activation of AMPK and decreased phosphorylation of mTOR. These results suggest that the LKB1-AMPK-mTOR pathway has a role in induction of autophagy. Together, our findings indicate a novel mechanism by which SIRT3 protects a rotenone-induced PD cell model through the regulation of autophagy, which, in part, is mediated by activation of the LKB1-AMPK-mTOR pathway

    Genomic Inference of the Metabolism and Evolution of the Archaeal Phylum Aigarchaeota

    Get PDF
    Microbes of the phylum Aigarchaeota are widely distributed in geothermal environments, but their physiological and ecological roles are poorly understood. Here we analyze six Aigarchaeota metagenomic bins from two circumneutral hot springs in Tengchong, China, to reveal that they are either strict or facultative anaerobes, and most are chemolithotrophs that can perform sulfide oxidation. Applying comparative genomics to the Thaumarchaeota and Aigarchaeota, we find that they both originated from thermal habitats, sharing 1154 genes with their common ancestor. Horizontal gene transfer played a crucial role in shaping genetic diversity of Aigarchaeota and led to functional partitioning and ecological divergence among sympatric microbes, as several key functional innovations were endowed by Bacteria, including dissimilatory sulfite reduction and possibly carbon monoxide oxidation. Our study expands our knowledge of the possible ecological roles of the Aigarchaeota and clarifies their evolutionary relationship to their sister lineage Thaumarchaeota
    • …
    corecore