43 research outputs found

    Hemophilia a patients with inhibitors: Mechanistic insights and novel therapeutic implications

    Get PDF
    The development of coagulation factor VIII (FVIII) inhibitory antibodies is a serious complication in hemophilia A (HA) patients after FVIII replacement therapy. Inhibitors render regular prophylaxis ineffective and increase the risk of morbidity and mortality. Immune tolerance induction (ITI) regimens have become the only clinically proven therapy for eradicating these inhibitors. However, this is a lengthy and costly strategy. For HA patients with high titer inhibitors, bypassing or new hemostatic agents must be used in clinical prophylaxis due to the ineffective ITI regimens. Since multiple genetic and environmental factors are involved in the pathogenesis of inhibitor generation, understanding the mechanisms by which inhibitors develop could help identify critical targets that can be exploited to prevent or eradicate inhibitors. In this review, we provide a comprehensive overview of the recent advances related to mechanistic insights into anti-FVIII antibody development and discuss novel therapeutic approaches for HA patients with inhibitors

    Experimental and Modelling of Lightning Damage to Carbon Fibre-Reinforced Composites Under Swept Stroke

    Get PDF
    Lightning swept stroke creates multiple lightning attachments along an aircraft in flight. This introduces distinct structural damage compared to that from a single-point lightning current injection test in laboratory. This study presents both experimental and numerical studies on lightning damage in carbon fibre-reinforced polymer (CFRP) composites under swept stroke. Coupled electrical–thermal finite element (FE) models were proposed to predict lightning damage to CFRP composites under single-point current injection and swept stroke, respectively. A lightning swept stroke testing method was proposed by embedding a copper wire inside the composites to simulate multiple lightning attachments on the composites. The FE-predicted damage from single-point current injection and swept stroke were comparable to those obtained from the experiments with a deviation less than 23%, demonstrating the effectiveness of the proposed FE model. Finally, the FE model was further utilised to gain insights into the failure mechanism of CFRP composites under swept stroke associated with different skip distances and peak currents. This paper provides an experimental method and a FE model for obtaining the LS damage of CFRP composite by swept stroke

    Platelet-targeted gene therapy with human factor VIII establishes haemostasis in dogs with haemophilia A

    Get PDF
    It is essential to improve therapies for controlling excessive bleeding in patients with haemorrhagic disorders. As activated blood platelets mediate the primary response to vascular injury, we hypothesize that storage of coagulation Factor VIII within platelets may provide a locally inducible treatment to maintain haemostasis for haemophilia A. Here we show that haematopoietic stem cell gene therapy can prevent the occurrence of severe bleeding episodes in dogs with haemophilia A for at least 2.5 years after transplantation. We employ a clinically relevant strategy based on a lentiviral vector encoding the ITGA2B gene promoter, which drives platelet-specific expression of human FVIII permitting storage and release of FVIII from activated platelets. One animal receives a hybrid molecule of FVIII fused to the von Willebrand Factor propeptide-D2 domain that traffics FVIII more effectively into α-granules. The absence of inhibitory antibodies to platelet-derived FVIII indicates that this approach may have benefit in patients who reject FVIII replacement therapies. Thus, platelet FVIII may provide effective long-term control of bleeding in patients with haemophilia A. Haemophilia is a genetic bleeding disorder associated with a deficiency in the coagulation factor VIII. Here, the authors use gene therapy to achieve stable overexpression of factor VIII in platelets of dogs with haemophilia A, preventing the occurrence of severe bleeding episodes for over 2.5 years

    Platelet-Targeted Gene Therapy for Hemophilia

    No full text
    Gene therapy is an attractive approach for disease treatment. Since platelets are abundant cells circulating in blood with the distinctive abilities of storage and delivery and fundamental roles in hemostasis and immunity, they could be a unique target for gene therapy of diseases. Recent studies have demonstrated that ectopic expression of factor VIII (FVIII) in platelets under control of the platelet-specific promoter results in FVIII storage together with its carrier protein von Willebrand factor (VWF) in α-granules and the phenotypic correction of hemophilia A. Importantly, the storage and sequestration of FVIII in platelets appears to effectively restore hemostasis even in the presence of functional-blocking inhibitory antibodies. This review summarizes studies on platelet-specific gene therapy of hemophilia A as well as hemophilia B. Keywords: hemophilia, gene therapy, FVIII, FIX, tissue-specific expression, platelet, immune toleranc

    Platelet Gene Therapy Promotes Targeted Peripheral Tolerance by Clonal Deletion and Induction of Antigen-Specific Regulatory T Cells

    No full text
    Delivery of gene therapy as well as of biologic therapeutics is often hampered by the immune response of the subject receiving the therapy. We have reported that effective gene therapy for hemophilia utilizing platelets as a delivery vehicle engenders profound tolerance to the therapeutic product. In this study, we investigated whether this strategy can be applied to induce immune tolerance to a non-coagulant protein and explored the fundamental mechanism of immune tolerance induced by platelet-targeted gene delivery. We used ovalbumin (OVA) as a surrogate non-coagulant protein and constructed a lentiviral vector in which OVA is driven by the platelet-specific αIIb promoter. Platelet-specific OVA expression was introduced by bone marrow transduction and transplantation. Greater than 95% of OVA was stored in platelet α-granules. Control mice immunized with OVA generated OVA-specific IgG antibodies; however, mice expressing OVA in platelets did not. Furthermore, OVA expression in platelets was sufficient to prevent the rejection of skin grafts from CAG-OVA mice, demonstrating that immune tolerance developed in platelet-specific OVA-transduced recipients. To assess the mechanism(s) involved in this tolerance we used OTII mice that express CD4+ effector T cells specific for an OVA-derived peptide. After platelet-specific OVA gene transfer, these mice showed normal thymic maturation of the T cells ruling against central tolerance. In the periphery, tolerance involved elimination of OVA-specific CD4+ effector T cells by apoptosis and expansion of an OVA-specific regulatory T cell population. These experiments reveal the existence of natural peripheral tolerance processes to platelet granule contents which can be co-opted to deliver therapeutically important products
    corecore