235 research outputs found

    Exploring Teachers\u27 Perceptions of Wikis for Learning Classroom Cases

    Get PDF
    This paper explores three potential affordances (social, technical and pedagogical) of wikis in the context of designing 32 teachers’ learning of classroom management cases. With the requirement of teachers’ case-based learning and the potential affordances of wikis considered, two learning environments for teachers’ case-based learning process were designed. Two groups of these teacher-participants posted their own written and audio cases, identified problems, discussed and proposed solutions with the input of their peers, in the respective wikis hosted in Google Sites and LAMS. These teachers’ perceptions of the wikis’ affordances to support their case-based learning were surveyed quantitatively. The five-point Likert-scale survey results indicated that teachers perceive highest technical affordance, followed by social affordance and pedagogical affordance in these two wikis. Qualitative data from the teachers’ online discussions and reflection logs was also analyzed to probe why teachers perceived such varied affordances of wikis. The findings highlighted that technical affordance was perceived to be the most educationally rewarding experience to this group of teachers among the three affordances. They experienced ease of use and free of technical hiccups in achieving their learning goals (interaction with peers and sharing of resources) in these wikis. This paper discusses further work in harnessing wikis’ affordances for designing more effective cased-based learning environments to cater to diverse learners. It also provides suggestions for wiki-pedagogy for future research

    Academic Digital Library Construction Evaluation: Measures and Approaches

    Get PDF
    Through review norms, standards and practice related to academic digital library construction evaluation at home and abroad, on the basis of investigation and study on the digital library evaluation at home and abroad, for status quo of the academic digital library construction, using qualitative analysis and quantitative analysis method, with methods and indicators for the traditional library evaluation system as a reference coordinates, put forward a comprehensive evaluation index system of digital library facilities and services for hybrid library. The reference index system meet the management evaluation, user evaluation, self- evaluation, and other demand; under the framework of evaluation index system, users can choice indicators, stipulate measure, constitute evaluation model and implementation guidelines for proper motion, consistent with their own specific objectives and needs evaluation index system

    Academic Digital Library Construction Evaluation: Measures and Approaches

    Get PDF
    Through review norms, standards and practice related to academic digital library construction evaluation at home and abroad, on the basis of investigation and study on the digital library evaluation at home and abroad, for status quo of the academic digital library construction, using qualitative analysis and quantitative analysis method, with methods and indicators for the traditional library evaluation system as a reference coordinates, put forward a comprehensive evaluation index system of digital library facilities and services for hybrid library. The reference index system meet the management evaluation, user evaluation, self- evaluation, and other demand; under the framework of evaluation index system, users can choice indicators, stipulate measure, constitute evaluation model and implementation guidelines for proper motion, consistent with their own specific objectives and needs evaluation index system

    Magnetic ordering and structural phase transitions in strained ultrathin SrRuO3_{3}/SrTiO3_{3} superlattice

    Full text link
    Ruthenium-based perovskite systems are attractive because their Structural, electronic and magnetic properties can be systematically engineered. SrRuO3_3/SrTiO3_3 superlattice, with its period consisting of one unit cell each, is very sensitive to strain change. Our first-principles simulations reveal that in the high tensile strain region, it transits from a ferromagnetic (FM) metal to an antiferromagnetic (AFM) insulator with clear tilted octahedra, while in the low strain region, it is a ferromagnetic metal without octahedra tilting. Detailed analyses of three spin-down Ru-t2g_{2g} orbitals just below the Fermi level reveal that the splitting of these orbitals underlies these dramatic phase transitions, with the rotational force constant of RuO6_6 octahedron high up to 16 meV/Deg2^2, 4 times larger than that of TiO6_6. Differently from nearly all the previous studies, these transitions can be probed optically through the diagonal and off-diagonal dielectric tensor elements. For one percent change in strain, our experimental spin moment change is -0.14±\pm0.06 μB\mu_B, quantitatively consistent with our theoretical value of -0.1 μB\mu_B.Comment: 3 figures, 1 supplementary material, accepted by Phys. Rev. Let

    A MANOVA of LBP Features for Face Recognition

    Get PDF

    Case Report: Four cases of SARS-CoV-2-associated Guillain-Barré Syndrome with SARS-CoV-2-positive cerebrospinal fluid detected by metagenomic next-generation sequencing: a retrospective case series from China

    Get PDF
    Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is often absent or at low levels in the cerebrospinal fluid (CSF) of patients with previous SARS-CoV-2-associated Guillain-Barré syndrome (GBS). This has led to speculation that SARS-CoV-2-associated GBS is more likely mediated by post-infectious immunity or a parainfection. This understanding has influenced the development of treatment regimens for SARS-CoV-2-associated GBS. This paper reports our experience with four Chinese patients with SARS-CoV-2-associated GBS who tested positive for SARS-CoV-2 RNA in the CSF. They developed symptoms of peripheral nerve damage 4–15 days after fever and confirmed SARS-CoV-2 infection, all of whom presented with progressive weakness of both lower limbs; three with autonomic nerve function impairment such as constipation and urination disorder; and one with polycranial neuritis and Miller–Fisher syndrome. Three patients were tested for anti-ganglioside antibodies, and one tested positive for GD1a-IgG. Four patients recovered well after treatment with anti-viral drugs combined with intravenous immunoglobulin. The present results showed that SARS-CoV-2 RNA can be detected via mNGS in the CSF of some patients with SARS-CoV-2-associated GBS, suggesting that SARS-CoV-2-associated GBS may have multiple pathogeneses

    One-Pot Synthesis of N-Rich Porous Carbon for Efficient CO2 Adsorption Performance

    Get PDF
    N-enriched porous carbons have played an important part in CO2 adsorption application thanks to their abundant porosity, high stability and tailorable surface properties while still suffering from a non-efficient and high-cost synthesis method. Herein, a series of N-doped porous carbons were prepared by a facile one-pot KOH activating strategy from commercial urea formaldehyde resin (UF). The textural properties and nitrogen content of the N-doped carbons were carefully controlled by the activating temperature and KOH/UF mass ratios. As-prepared N-doped carbons show 3D block-shaped morphology, the BET surface area of up to 980 m2/g together with a pore volume of 0.52 cm3/g and N content of 23.51 wt%. The optimal adsorbent (UFK-600-0.2) presents a high CO2 uptake capacity of 4.03 mmol/g at 0 ◦C and 1 bar. Moreover, as-prepared N-doped carbon adsorbents show moderate isosteric heat of adsorption (43–53 kJ/mol), acceptable ideal adsorption solution theory (IAST) selectivity of 35 and outstanding recycling performance. It has been pointed out that while the CO2 uptake was mostly dependent on the textural feature, the N content of carbon also plays a critical role to define the CO2 adsorption performance. The present study delivers favorable N-doped carbon for CO2 uptake and provides a promising strategy for the design and synthesis of the carbon adsorbents

    Experimental observation of non-Abelian earring nodal links in phononic crystals

    Full text link
    Nodal lines are symmetry-protected one-dimensional band degeneracies in momentum space, which can appear in numerous topological configurations such as nodal rings, chains, links, and knots. Very recently, non-Abelian topological physics has been proposed in space-time inversion (PT) symmetric systems, and attract widespread attention. One of the most special configurations in non-Abelian system is the earring nodal link, composing of a nodal chain linking with an isolated nodal line, is signature of non-Abelian topology and cannot be elucidated using Abelian topological classifications. However, the earring nodal links have not been yet observed in real system. Here we design the phononic crystals with earring nodal links, and verify its non-Abelian topologicial charge in full-wave simulations. Moreover, we experimentally observed two different kinds of earring nodal links by measuring the band structures for two phononic crystals. Specifically, we found that the order of the nodal chain and line can switch after band inversion but their link cannot be severed. Our work provides experimental evidence for phenomena unique to non-Abelian band topology and our simple acoustic system provides a convenient platform for studying non-Abelian charges.Comment: 14 pages, 3 figure

    The link between diabetic retinal and renal microvasculopathy is associated with dyslipidemia and upregulated circulating level of cytokines

    Get PDF
    PurposeTo investigate the mechanisms underlying the correlations between diabetic retinopathy (DR) and diabetic nephropathy (DKD) and examine whether circulating cytokines and dyslipidemia contribute to both DR and DKD in patients with 2 diabetes mellitus (T2DM).MethodsA total of 122 patients with T2DM were enrolled and categorized into the DM group (without no DR and DKD), DR group [non-proliferative DR (NPDR), and proliferative DR (PDR)] with no DKD), DR complicated with DKD groups (DR+DKD group). The biochemical profile, including fasting blood glucose (FBG), glycated hemoglobin (HbA1c), and lipid profile were estimated, and plasma inflammatory and angiogenic cytokines [monocyte chemoattractant protein-1 (MCP-1), interleukin (IL)-6, IL-8, vascular endothelial growth factor (VEGF)-A, C, D, and placental growth factor (PlGF)] were analyzed by protein microarrays. The atherogenic plasma index (API) was defined as low-density lipoprotein cholesterol (LDL-C)/high-density lipoprotein-cholesterol (HDL-C); atherogenic index (AI) was calculated as [(total cholesterol (TC) -HDL-C)/HDL-C], and atherogenic index of plasma (AIP) was defined as log (TG/HDL-C).ResultsBy multivariable disordered regression analysis, after controlling for duration of DM and hypertension, LDL-C (p = 0.019) and VEGF-D (p = 0.029) resulted as independent risk factors for DR. Albumin-to-creatinine ratio (uACR) (p = 0.003) was an independent risk factor for DR with DKD. In DR, NPDR, and PDR groups, grades of A1, A2, and A3 of albuminuria increased with the severity of DR. In A1, A2, and A3 grade groups, the severity of DR (DM, NPDR, and PDR) increased with higher albuminuria grades. Kendall's tau-b correlation coefficient analysis revealed that FBG (p = 0.019), circulating level of PlGF (p = 0.002), and VEGF-D (p = 0.008) were significantly positively correlated with the grades of uACR (p < 0.001), and uACR grades were significantly correlated with DR severity (p < 0.001).ConclusionsThe occurrence and severity of DR are closely correlated with kidney dysfunction. Among the three kidney functional parameters, uACR resulted as the better indicator of DR severity and progression than glomerular filtration (eGFR) and serum creatinine (Scr). Impaired FBG was associated with microalbuminuria, emphasizing that well-controlled FBG is important for both DR and DKD. The link between diabetic retinal and renal microvasculopathy was associated with dyslipidemia and upregulated circulating level of angiogenic cytokines

    Adaptive Neural Back-Stepping Control with Constrains for a Flexible Air-Breathing Hypersonic Vehicle

    Get PDF
    The design of an adaptive neural back-stepping control for a flexible air-breathing hypersonic vehicle (AHV) in the presence of input constraint and aerodynamic uncertainty is discussed. Based on functional decomposition, the dynamics can be decomposed into the velocity subsystem and the altitude subsystem. To guarantee the exploited controller’s robustness with respect to parametric uncertainties, neural network (NN) is applied to approximate the lumped uncertainty of each subsystem of AHV model. The exceptional contribution is that novel auxiliary systems are introduced to compensate both the tracking errors and desired control laws, based on which the explored controller can still provide effective tracking of velocity and altitude commands when the actuators are saturated. Finally, simulation studies are made to illustrate the effectiveness of the proposed control approach in spite of the flexible effects, system uncertainties, and varying disturbances
    • …
    corecore