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The design of an adaptive neural back-stepping control for a flexible air-breathing hypersonic vehicle (AHV) in the presence of
input constraint and aerodynamic uncertainty is discussed. Based on functional decomposition, the dynamics can be decomposed
into the velocity subsystem and the altitude subsystem. To guarantee the exploited controller’s robustness with respect to parametric
uncertainties, neural network (NN) is applied to approximate the lumped uncertainty of each subsystem of AHV model. The
exceptional contribution is that novel auxiliary systems are introduced to compensate both the tracking errors and desired control
laws, based on which the explored controller can still provide effective tracking of velocity and altitude commands when the
actuators are saturated. Finally, simulation studies are made to illustrate the effectiveness of the proposed control approach in
spite of the flexible effects, system uncertainties, and varying disturbances.

1. Introduction

Air-breathing hypersonic vehicles (AHV) are crucial because
they may represent a more efficient way to make access to
space routine or even make the space travel routine and
intercontinental travel as easy as intercity travel. A key issue
in making AHV feasible and efficient is the flight control
design [1]. However, the flight control of AHV is still an
open challenge due to its peculiarity of flight dynamics. It
is worth noting that there exists strong coupling between
the propulsive and the aerodynamic forces, which makes
the aerodynamic characteristics of AHV very difficult to be
estimated and measured [2, 3].

Recently, lots of efforts have been put into flight control
forAHV. Linear control theorywaswidely employed for flight
control design based on linearized model. As shown in [4],
the robust control of AHV is studied by introducing a linear
quadratic regulator (LQR) with stochastic robustness analy-
sis. In [5], LQR controller is proposed for the linearization
model based on any equilibrium points of flight envelope.

Nonlinear control scheme is also employed for AHV.
Back-stepping has been proved to be a powerful tool for
the tracking control of a large class of strict-feedback sys-
tems or pure-feedback ones [6–12]. Back-stepping design

for nonlinear systems consists of a recursive design proce-
dure, which breaks down the full system control problem
into a sequence of designs for lower-order subsystems. A
back-stepping controller is designed with multilayer online
adaptive neural networks, which can provide good track-
ing performance [13]. In [14], a combination of novelty
command filtered back-stepping technology and dynamic
inversion methodology is adopted for designing a dynamic
state-feedback controller that provides stable tracking of the
altitude and velocity reference commands. However, it is well
known that there exists a problem of “explosion of terms”
in the traditional back-stepping design, which is caused by
the repeated differentiations of virtual control laws. To solve
this problem, dynamic surface control [15] and tracking
differentiators [16] should be applied.

Since the aerodynamic characteristics of AHV are sensi-
tive to the flight condition changes, they are difficult to be
measured. Thus, the aerodynamic uncertainty needs to be
dealt with at the control design as the main issues. Con-
ventionally, the flight control is accomplished by feedback
linearization with neural networks to deal with the uncer-
tainties. Efforts in [17] approximate the unknown nonlinear
functions by radial basis function networks and incorporat-
ing the dynamic surface technique into a neural network
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based adaptive control design framework. Reference [18]
investigates the discrete time controller for the longitudinal
dynamics of the hypersonic flight vehicle with throttle setting
constraint. The controller is proposed by estimating the
system uncertainty and unknown control gain separately
with neural networks. The auxiliary error signal is designed
to compensate the effect of throttle setting constraint.

Moreover, input constraint also cannot be ignored in
practice since the outputs of actuators are constrained
for physical limitations. If the input constraint is ignored,
control systems may suffer from performance limitations
or even lose stability [19–21]. Much literature theoretically
focuses on the control problem with input constraint [22–
26]. In practice, when input constraint occurs, aircraft body
may change seriously even disintegrating. So it is neces-
sary to research the control design problem with input
constraint.

Motivated by the results of the previous studies, an
adaptive neural back-stepping control approach is addressed
for the longitudinal dynamical model of AHV. By viewing
the flexible effects as system uncertainties, the longitudinal
dynamics of AHV are decomposed into two functional
subsystems, namely, the respective velocity subsystem and
altitude subsystem. To ensure the controller’s robustness,
NNs are applied to estimate the lumped uncertainty of
each subsystem. Particularly, novel auxiliary systems are
exploited to deal with the problemof control input constraint.
Finally, simulation results are presented to demonstrate the
efficacy of the proposed control methodology. The special
advantages of the approach proposed herein include the
following:

(1) The novel auxiliary systems are employed to elimi-
nate the error between the desired control laws and
actual control laws, which makes sure that the semi-
globally uniformly bounded stability of closed-loop
system can be still achieved even when the physical
limitations are in effect.

(2) The second-order reference model is designed for the
precise estimation of the derivatives of virtual control
laws, which predigests the design of controller.

The organization of paper is outlined as follows. Firstly,
the longitudinal motion model and control-oriented
model of an AHV are described in Section 2. Section 3
presents the design procedures of adaptive neural back-
stepping controller. Then, simulation results are given in
Section 4. Finally, brief concluding remarks end the paper in
Section 5.

2. Problem Formulation

2.1. Longitudinal Dynamic Model of AHV. The model taken
into consideration in this paper is developed by Bolender and
Doman [27] for the longitudinal dynamics of an AHV. The
flexible effects are included in these equations by modeling
the vehicle as a single flexible structurewithmass-normalized
mode shapes.

Assuming a flat Earth and normalizing the span of an
AHV to unit depth, the nonlinear motion equations are
written as [27]
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where the rigid body states 𝑉, ℎ, 𝛾, 𝜃, and 𝑄 represent
velocity, altitude, flight path angle, pitch angle, and pitch rate,
respectively; 𝜇 and 𝑅

𝐸
are gravity constant and the radial

distance from center of the earth; 𝑚 and 𝐼

𝑦𝑦
are mass of

vehicle and moment of inertia about pitch axis; 𝑇, 𝐷, 𝐿, and
𝑀 represent thrust, drag, lift, and pitchmoment, respectively;
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[𝜂1
̇𝜂

1
𝜂

2
̇𝜂

2
𝜂

3
̇𝜂

3]

𝑇 denote the first three bendingmodes
of the fuselage; 0 < 𝜁

𝑖
< 1 and 𝜔

𝑖
> 0 (𝑖 = 1, 2, 3) mean the

damping ratio and natural frequency of the mass-normalized
generalized coordinates of the flexible structure.

The dynamic system of an AHV can be decomposed as
velocity subsystem and altitude-related subsystem.Define the
control inputs 𝑢 = [Φ, 𝛿

𝑒
], which are fuel equivalence ratio

and elevator angular deflection, respectively.

Remark 1. In [28], the controller design requires an auxiliary
actuator as the canard. However, the presence of a canard is
quite problematic for the vehicle configuration, as this control
surface must withstand the expected high temperatures at
hypersonic speed. Therefore, it is assumed that only the
fuel-to-air ratio and elevator are the actuators available for
controlling the vehicle.

Let
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where 𝑞, 𝑆, and 𝑐 stand for the respective dynamic pressure,
reference area, and aerodynamic chord. 𝜀

𝑇
, 𝜀
𝐿
, 𝜀
𝐷
, and 𝜀

𝑀
are

denoted as the fitting error of 𝑇, 𝐿,𝐷, and𝑀, respectively.
To be convenient for design of back-stepping, (1) can be
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The model errors are considered as
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Remark 2. The flexible dynamics are taken as perturbations
on the rigid body system, and their effects are evaluated in
simulation. According to (1) and (4), 𝜂

𝑖
would be asymptotic

stability if Φ, 𝛿
𝑒
, and 𝛼 are bounded.

2.2. Control Objective. In practice, due to physical limita-
tions, the outputs of the actuator are constrained. Input
constraints studied in the paper include the constraint on
fuel equivalence ratio, elevator deflection. The constraint
on fuel equivalence ratio is imposed by the very nature of
the propulsion system, which is required to maintain the
conditions that sustain scramjet operation [29]. If the limit
is violated, the thermal choking will occur. It could induce
that engine unstarts which could jeopardize mission, vehicle,
and its contents [30]. The constraints on elevator deflection
and canard deflection are mainly imposed by the limits on
control surface displacement. The above input constraint can
be expressed as
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where Φmax and Φmin denote the upper and lower bound of
Φ, respectively; 𝛿

𝑒max and 𝛿𝑒min stand for the upper and lower
bound of 𝛿

𝑒
, respectively; Φ

𝑐
and 𝛿

𝑒𝑐
are the desired control

inputs to be designed in the subsequent section.
A second-order referencemodelwith amplitude, rate, and

bandwidth limitation is introduced to deal with the input
constraint. The structure of second-order reference model is
given in Figure 1. Φ0, 𝛿0

𝑒
, and 𝛾0

𝑐
, 𝛼0
𝑐
, and 𝑄0

𝑐
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actual control variables and virtual control variables. Define
Φ, 𝛿
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, and 𝛾

𝑐
, 𝛼
𝑐
, and 𝑄

𝑐
as the executable control laws and

virtual control laws with the second-order reference model.

2.3. Radial Basis Function NN Approximation. The radial
basis function NN (RBFNN) will be introduced to approach
the unknown functions 𝑓

𝑥
(z) and 𝑔

𝑥
(z) (𝑥 = 𝑉, 𝛾, 𝑄) owing

to its excellent performance and global approximation. It
has been proved that RBFNN can approximate an arbitrary
continuous function over a compact set Ωz ⊆ R𝑛 to an
arbitrary accuracy. RBFNN is formulated as 𝜃𝑇𝜉(z) with the
input vector z ⊆ R𝑛, the weight vector 𝜃 ⊆ R𝑚, the basis
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Figure 1: Second-order reference model.

function vector 𝜉(z) ⊆ R𝑚, the node number 𝑚, and the
input number 𝑛.Thebasis function is selected as the following
Gaussian function:
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Lemma 5 (see [31]). The adaptive law of ̂𝜃 is designed as
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{

{

^ − 𝛽

̂𝜃, 𝑖𝑓

󵄩

󵄩

󵄩

󵄩

󵄩

̂𝜃
󵄩

󵄩

󵄩

󵄩

󵄩

< 𝜃

𝑀
𝑜𝑟

󵄩

󵄩

󵄩

󵄩

󵄩

̂𝜃
󵄩

󵄩

󵄩

󵄩

󵄩

= 𝜃

𝑀
,

̂𝜃
𝑇

^ ≤ 0

^ − 𝛽

̂𝜃 −

̂𝜃̂𝜃
𝑇

^
󵄩

󵄩

󵄩

󵄩

󵄩

̂𝜃
󵄩

󵄩

󵄩

󵄩

󵄩

2
, 𝑖𝑓

󵄩

󵄩

󵄩

󵄩

󵄩

̂𝜃
󵄩

󵄩

󵄩

󵄩

󵄩

= 𝜃

𝑀
,

̂𝜃
𝑇

^ > 0;

(17)

then ‖̂𝜃(𝑡)‖ ≤ 𝜃

𝑀; 𝜃𝑀 is positive constant.

3. Controller Design

The control objective pursued in this section is to develop
an adaptive neural back-stepping controller for an AHV to
provide robust tracking of velocity and altitude commands
𝑉ref and ℎref . It is assumed that the rigid body states 𝑉, ℎ,
𝛾, 𝛼, and 𝑄 are available for measurement. It is easy to note
that the velocity 𝑉 is mainly related toΦ and the altitude ℎ is
mainly affected by 𝛿

𝑒
since the thrust 𝑇 affects 𝑉 and 𝛿

𝑒
has

a dominant contribution to ℎ change in (1). In what follows,
the respective control lawsΦ and 𝛿

𝑒
will be designed to make

𝑉 → 𝑉ref and ℎ → ℎref .

Assumption 6. Consider sup |Δ
𝑥
| ≤ Δ

𝑀

𝑥
; Δ𝑀

𝑥
is positive

constant. Define ̃

Δ

𝑀

𝑥
= Δ

𝑀

𝑥
−

̂

Δ

𝑀

𝑥
which stand for the

estimation error of Δ𝑀
𝑥
.

Lemma 7 (see [32]). If 𝑥 ∈ R and 𝜀 > 0, then 0 ≤ |𝑥| −

𝑥 tanh(𝑥/𝜀) ≤ 𝑘𝜀, 𝑘 = 0.2785.

3.1. Controller Design for Velocity Subsystem. Differentiating
the velocity track error ̃𝑉 = 𝑉 − 𝑉ref with respect to time
results in

̇

̃

𝑉 = 𝑓

𝑉
+ 𝑔

𝑉
Φ + 𝐹

𝑉
+ Δ

𝑉
−

̇

𝑉ref

=

̂

𝑓

𝑉
+ 𝑔

𝑉
Φ

0
+ [(𝑓

𝑉
−

̂

𝑓

𝑉
) + (𝑔

𝑉
− 𝑔

𝑉
)Φ]

+ 𝑔

𝑉
(Φ − Φ

0
) + 𝐹

𝑉
+ Δ

𝑉
−

̇

𝑉ref

(18)
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with

(𝑓

𝑉
−

̂

𝑓

𝑉
) + (𝑔

𝑉
− 𝑔

𝑉
)Φ

= (𝜃
∗

𝑓
𝑉

−

̂𝜃
𝑓
𝑉

)

𝑇

𝜉
𝑓
𝑉

+ (𝜃
∗

𝑔
𝑉

−

̂𝜃
𝑔
𝑉

)

𝑇

𝜉
𝑔
𝑉

Φ + 𝜀

∗

𝑓
𝑉

+ 𝜀

∗

𝑔
𝑉

Φ.

(19)

To eliminate the error between Φ and Φ

0, a novel
auxiliary system is introduced as

̇

𝜆

𝑉
= −𝜅

𝑉
𝜆

𝑉
−

̃

𝑉𝑔

𝑉
(Φ − Φ

0
)

𝜆

𝑉

,

(20)

where 𝜅
𝑉
> 0 is a design parameter.

The adaptive law of weight vector can be designed as

̇

̂𝜃
𝑓
𝑉

= Γ
𝑓
𝑉

(𝜉
𝑓
𝑉

̃

𝑉 − 𝛽

𝑓
𝑉

̂𝜃
𝑓
𝑉

) ,

̇

̂𝜃
𝑔
𝑉

= Γ
𝑔
𝑉

Proj (̂𝜃
𝑔
𝑉

, 𝜉
𝑔
𝑉

Φ

̃

𝑉, 𝛽

𝑔
𝑉

) ,

(21)

where Γ
𝑓
𝑉

= Γ
𝑇

𝑓
𝑉

, Γ
𝑔
𝑉

= Γ
𝑇

𝑔
𝑉

, and 𝛽

𝑓
𝑉

and 𝛽

𝑔
𝑉

are design
parameters.

The adaptive law of Δ𝑀
𝑉
is given as follows:

̇

̂

Δ

𝑀

𝑉
= 𝜎

𝑉
(

󵄨

󵄨

󵄨

󵄨

󵄨

̃

𝑉

󵄨

󵄨

󵄨

󵄨

󵄨

− 𝛽

𝑉
̂

Δ

𝑀

𝑉
) ,

(22)

where 𝜎
𝑉
and 𝛽

𝑉
are design parameters.

The desired controllerΦ0 is introduced as

Φ

0
= 𝑔

−1

𝑉
[−𝑘

𝑉,1
̃

𝑉 − 𝑘

𝑉,2
∫

𝑡

0

̃

𝑉𝑑𝜏 + 𝑘

𝑉,3
𝜆

𝑉
− 𝐹

𝑉
+

̇

𝑉ref

−

̂

𝑓

𝑉
−

̂

Δ

𝑀

𝑉
tanh(

̃

𝑉

𝜀

𝑉

)] ,

(23)

where 𝑘
𝑉,1

and 𝑘
𝑉,2

are positive constants to be designed.
Plugging (23) into (18) results in

̇

̃

𝑉 = −𝑘

𝑉,1
̃

𝑉 − 𝑘

𝑉,2
∫

𝑡

0

̃

𝑉𝑑𝜏 + 𝑘

𝑉,3
𝜆

𝑉
+

̃𝜃
𝑇

𝑓
𝑉

𝜉
𝑓
𝑉

+

̃𝜃
𝑇

𝑔
𝑉

𝜉
𝑔
𝑉

Φ + 𝜀

∗

𝑓
𝑉

+ 𝜀

∗

𝑔
𝑉

Φ + 𝑔

𝑉
(Φ − Φ

0
)

+ [Δ

𝑉
−

̂

Δ

𝑀

𝑉
tanh(

̃

𝑉

𝜀

𝑉

)] .

(24)

The Lyapunov function can be designed as

𝑊

𝑉
=

1

2

̃

𝑉

2
+

𝑘

𝑉,2

2

(∫

𝑡

0

̃

𝑉𝑑𝜏)

2

+

1

2

𝜆

2

𝑉
+

1

2𝜎

𝑉

(

̃

Δ

𝑀

𝑉
)

2

+

1

2

̃𝜃
𝑇

𝑓
𝑉

Γ
−1

𝑓
𝑉

̃𝜃
𝑓
𝑉

+

1

2

̃𝜃
𝑇

𝑔
𝑉

Γ
−1

𝑔
𝑉

̃𝜃
𝑔
𝑉

.

(25)

Differentiating𝑊
𝑉
with respect to time results in

̇

𝑊

𝑉
= −𝑘

𝑉,1
̃

𝑉

2
+ 𝑘

𝑉,3
̃

𝑉𝜆

𝑉
− 𝜅

𝑉
𝜆

2

𝑉
+

̃

𝑉 (𝜀

∗

𝑓
𝑉

+ 𝜀

∗

𝑔
𝑉

Φ)

+

̃

𝑉[Δ

𝑉
−

̂

Δ

𝑀

𝑉
tanh(

̃

𝑉

𝜀

𝑉

)] +

󵄨

󵄨

󵄨

󵄨

󵄨

̃

𝑉

󵄨

󵄨

󵄨

󵄨

󵄨

̃

Δ

𝑀

𝑉

− 𝛽

𝑉
̃

Δ

𝑀

𝑉
̂

Δ

𝑀

𝑉
− 𝛽

𝑓
𝑉

̃𝜃
𝑇

𝑓
𝑉

̂𝜃
𝑓
𝑉

− 𝛽

𝑔
𝑉

̃𝜃
𝑇

𝑔
𝑉

̂𝜃
𝑔
𝑉

− 𝜐

𝑓
𝑉

̃𝜃
𝑇

𝑓
𝑉

̂𝜃
𝑓
𝑉

̂𝜃
𝑇

𝑓
𝑉

𝜉
𝑓
𝑉

̃

𝑉

󵄩

󵄩

󵄩

󵄩

󵄩

̂𝜃
𝑓
𝑉

󵄩

󵄩

󵄩

󵄩

󵄩

2
− 𝜐

𝑔
𝑉

̃𝜃
𝑇

𝑔
𝑉

̂𝜃
𝑔
𝑉

̂𝜃
𝑇

𝑔
𝑉

𝜉
𝑔
𝑉

Φ

̃

𝑉

󵄩

󵄩

󵄩

󵄩

󵄩

̂𝜃
𝑔
𝑉

󵄩

󵄩

󵄩

󵄩

󵄩

2
.

(26)

When ‖

̂𝜃
𝑔
𝑉

‖ ≤ 𝜃

𝑀

𝑔
𝑉

and ̂𝜃
𝑇

𝑔
𝑉

≤ 0, 𝜐
𝑓
𝑉

= 𝜐

𝑔
𝑉

= 0; when ‖

̂𝜃
𝑔
𝑉

‖ =

𝜃

𝑀

𝑔
𝑉

and ̂

𝜃

𝑇

𝑔
𝑉

> 0, 𝜐
𝑓
𝑉

= 𝜐

𝑔
𝑉

= 1.
Invoking Lemma 7, we have

̃

𝑉[Δ

𝑉
−

̂

Δ

𝑀

𝑉
tanh(

̃

𝑉

𝜀

𝑉

)]

≤

󵄨

󵄨

󵄨

󵄨

󵄨

̃

𝑉

󵄨

󵄨

󵄨

󵄨

󵄨

̃

Δ

𝑀

𝑉
+

̂

Δ

𝑀

𝑉
[

󵄨

󵄨

󵄨

󵄨

󵄨

̃

𝑉

󵄨

󵄨

󵄨

󵄨

󵄨

−

̃

𝑉 tanh(
̃

𝑉

𝜀

𝑉

)]

≤ −

󵄨

󵄨

󵄨

󵄨

󵄨

̃

𝑉

󵄨

󵄨

󵄨

󵄨

󵄨

̃

Δ

𝑀

𝑉
+ 𝑘

𝑉

󵄨

󵄨

󵄨

󵄨

󵄨

̂

Δ

𝑀

𝑉

󵄨

󵄨

󵄨

󵄨

󵄨

𝜀

𝑉
.

(27)

Substituting (27) into (26) results in

̇

𝑊

𝑉
≤ −𝜇

𝑉,1
(

̃

𝑉 − 𝜇

𝑉,2
𝜆

𝑉
)

2

− 𝜇

𝑉,3
[

̃

𝑉 − 𝜇

𝑉,4
(𝜀

∗

𝑓
𝑉

+ 𝜀

∗

𝑔
𝑉

Φ)]

2

+ 𝜇

𝑉,5
(𝜀

∗

𝑓
𝑉

+ 𝜀

∗

𝑔
𝑉

Φ)

2

+ 𝑘

𝑉

󵄨

󵄨

󵄨

󵄨

󵄨

̂

Δ

𝑀

𝑉

󵄨

󵄨

󵄨

󵄨

󵄨

𝜀

𝑉
− 𝛽

𝑉
̃

Δ

𝑀

𝑉
̂

Δ

𝑀

𝑉

− 𝛽

𝑓
𝑉

̃𝜃
𝑇

𝑓
𝑉

̂𝜃
𝑓
𝑉

− 𝛽

𝑔
𝑉

̃𝜃
𝑇

𝑔
𝑉

̂𝜃
𝑔
𝑉

,

(28)

where

𝜇

𝑉,1
=

𝑘

2

𝑉,3

(4𝜅

𝑉
)

,

𝜇

𝑉,2
=

2𝜅

𝑉

𝑘

𝑉,3

,

𝜇

𝑉,3
= 𝑘

𝑉,1
− 𝜇

𝑉,1
,

𝜇

𝑉,4
=

1

(2𝜇

𝑉,3
)

,

𝜇

𝑉,5
= 𝜇

𝑉,3
𝜇

2

𝑉,4
.

(29)

According to 2𝑥𝑦 ≤ 𝑐𝑥

2
+ (1/𝑐)𝑦

2, we obtain

𝑘

𝑉

󵄨

󵄨

󵄨

󵄨

󵄨

̂

Δ

𝑀

𝑉

󵄨

󵄨

󵄨

󵄨

󵄨

𝜀

𝑉
≤

𝛽

𝑉
(

̂

Δ

𝑀

𝑉
)

2

2

+

(𝑘

𝑉
𝜀

𝑉
)

2

2𝛽

𝑉

.

(30)

Invoking Lemma 4, it is deduced as

𝛽

𝑉
̃

Δ

𝑀

𝑉
̂

Δ

𝑀

𝑉
=

𝛽

𝑉

2

[− (

̃

Δ

𝑀

𝑉
)

2

− (

̂

Δ

𝑀

𝑉
)

2

+ (Δ

𝑀

𝑉
)

2

] ,
(31)
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𝛽

𝑓
𝑉

̃𝜃
𝑇

𝑓
𝑉

̂𝜃
𝑓
𝑉

≤

𝛽

𝑓
𝑉

2

[−

󵄩

󵄩

󵄩

󵄩

󵄩

̃𝜃
𝑓
𝑉

󵄩

󵄩

󵄩

󵄩

󵄩

2

+

󵄩

󵄩

󵄩

󵄩

󵄩

𝜃
∗

𝑓
𝑉

󵄩

󵄩

󵄩

󵄩

󵄩

2

] ,

(32)

𝛽

𝑔
𝑉

̃𝜃
𝑇

𝑔
𝑉

̂𝜃
𝑔
𝑉

≤

𝛽

𝑔
𝑉

2

[−

󵄩

󵄩

󵄩

󵄩

󵄩

̃𝜃
𝑔
𝑉

󵄩

󵄩

󵄩

󵄩

󵄩

2

+

󵄩

󵄩

󵄩

󵄩

󵄩

𝜃
∗

𝑔
𝑉

󵄩

󵄩

󵄩

󵄩

󵄩

2

] .

(33)

Combining (30)–(33), we have the expression of

̇

𝑊

𝑉
≤ −𝜇

𝑉,1
(

̃

𝑉 − 𝜇

𝑉,2
𝜆

𝑉
)

2

− 𝜇

𝑉,3
[

̃

𝑉 − 𝜇

𝑉,4
(𝜀

∗

𝑓
𝑉

+ 𝜀

∗

𝑔
𝑉

Φ)]

2

−

𝛽

𝑉

2

(

̃

Δ

𝑀

𝑉
)

2

−

𝛽

𝑓
𝑉

2

󵄩

󵄩

󵄩

󵄩

󵄩

̃𝜃
𝑓
𝑉

󵄩

󵄩

󵄩

󵄩

󵄩

2

−

𝛽

𝑔
𝑉

2

󵄩

󵄩

󵄩

󵄩

󵄩

̃𝜃
𝑔
𝑉

󵄩

󵄩

󵄩

󵄩

󵄩

2

+ 𝜇

𝑉,5
(𝜀

∗

𝑓
𝑉

+ 𝜀

∗

𝑔
𝑉

Φ)

2

+

𝑘

2

𝑉

2𝛽

𝑉

𝜀

2

𝑉
+

𝛽

𝑉

2

(Δ

𝑀

𝑉
)

2

+

𝛽

𝑓
𝑉

2

󵄩

󵄩

󵄩

󵄩

󵄩

𝜃
∗

𝑓
𝑉

󵄩

󵄩

󵄩

󵄩

󵄩

2

+

𝛽

𝑔
𝑉

2

󵄩

󵄩

󵄩

󵄩

󵄩

𝜃
∗

𝑔
𝑉

󵄩

󵄩

󵄩

󵄩

󵄩

2

.

(34)

3.2. Controller Design for Altitude Subsystem. Define the
tracking errors of ℎ, 𝛾, 𝛼, and 𝑄, respectively, as

̃

ℎ = ℎ − ℎref , (35)

𝛾 = 𝛾 − 𝛾

𝑐
, (36)

𝛼̃ = 𝛼 − 𝛼

𝑐
, (37)

̃

𝑄 = 𝑄 − 𝑄

𝑐
. (38)

Differentiating (35)–(38) and invoking (5)–(8) yield

̇

̃

ℎ = 𝑉𝛾 + Δ

ℎ
−

̇

ℎref

= 𝑉𝛾

0

𝑐
+ 𝑉𝛾 + 𝑉 (𝛾

𝑐
− 𝛾

0

𝑐
) + Δ

ℎ
−

̇

ℎref,

(39)

̇

𝛾̃ = 𝑓

𝛾
+ 𝑔

𝛾
𝛼 + 𝐹

𝛾
+ Δ

𝛾
− ̇𝛾

𝑐

=

̂

𝑓

𝛾
+ 𝑔

𝛾
𝛼

0

𝑐
+ [(𝑓

𝛾
−

̂

𝑓

𝛾
) + (𝑔

𝛾
− 𝑔

𝛾
) 𝛼]

+ 𝑔

𝛾
(𝛼

𝑐
− 𝛼

0

𝑐
) + 𝑔

𝛾
𝛼̃ + 𝐹

𝛾
+ Δ

𝛾
− ̇𝛾

𝑐
,

(40)

̇

𝛼̃ = − (𝑓

𝛾
+ 𝑔

𝛾
𝛼) + 𝑄 + 𝐹

𝛼
+ Δ

𝛼
− 𝛼̇

𝑐

= − (

̂

𝑓

𝛾
+ 𝑔

𝛾
𝛼) + 𝑄

0

𝑐
− [(𝑓

𝛾
−

̂

𝑓

𝛾
) + (𝑔

𝛾
− 𝑔

𝛾
) 𝛼]

+ (𝑄

𝑐
− 𝑄

0

𝑐
) +

̃

𝑄 + 𝐹

𝛼
+ Δ

𝛼
− 𝛼̇

𝑐
,

(41)

̇

̃

𝑄 = 𝑓

𝑄
+ 𝑔

𝑄
𝛿

𝑒
+ Δ

𝑄
−

̇

𝑄

𝑐

=

̂

𝑓

𝑄
+ 𝑔

𝑄
𝛿

0

𝑒
+ [(𝑓

𝑄
−

̂

𝑓

𝑄
) + (𝑔

𝑄
− 𝑔

𝑄
) 𝛿

𝑒
]

+ 𝑔

𝑄
(𝛿

𝑒
− 𝛿

0

𝑒
) + Δ

𝑄
−

̇

𝑄

𝑐
,

(42)

where

(𝑓

𝛾
−

̂

𝑓

𝛾
) + (𝑔

𝛾
− 𝑔

𝛾
) 𝛼

= (𝜃
∗

𝑓
𝛾

−

̂𝜃
𝑓
𝛾

)

𝑇

𝜉
𝑓
𝛾

+ (𝜃
∗

𝑔
𝛾

−

̂𝜃
𝑔
𝛾

)

𝑇

𝜉
𝑔
𝛾

𝛼 + 𝜀

∗

𝑓
𝛾

+ 𝜀

∗

𝑔
𝛾

𝛼 (𝑓

𝑄
−

̂

𝑓

𝑄
) + (𝑔

𝑄
− 𝑔

𝑄
) 𝛿

𝑒

= (𝜃
∗

𝑓
𝑄

−

̂𝜃
𝑓
𝑄

)

𝑇

𝜉

𝑓
𝑄

+ (𝜃
∗

𝑔
𝑄

−

̂𝜃
𝑔
𝑄

)

𝑇

𝜉
𝑔
𝑄

𝛿

𝑒
+ 𝜀

∗

𝑓
𝑄

+ 𝜀

∗

𝑔
𝑄

𝛿

𝑒
.

(43)

The auxiliary systems are introduced as

̇

𝜆

ℎ
= −𝜅

ℎ
𝜆

ℎ
−

̃

ℎ𝑉 (𝛾

𝑐
− 𝛾

0

𝑐
)

𝜆

ℎ

,

̇

𝜆

𝛾
= −𝜅

𝛾
𝜆

𝛾
−

𝛾𝑔

𝛾
(𝛼

𝑐
− 𝛼

0

𝑐
)

𝜆

𝛾

,

̇

𝜆

𝛼
= −𝜅

𝛼
𝜆

𝛼
−

𝛼̃ (𝑄

𝑐
− 𝑄

0

𝑐
)

𝜆

𝛼

,

̇

𝜆

𝑄
= −𝜅

𝑄
𝜆

𝑄
−

̃

𝑄𝑔

𝑄
(𝛿

𝑒
− 𝛿

0

𝑒
)

𝜆

𝑄

,

(44)

where 𝜅
𝑥
(𝑥 = ℎ, 𝛾, 𝛼, 𝑄) stand for design parameters.

The adaptive laws of weight vector can be designed as

̇

̂𝜃
𝑓
𝛾

= Γ
𝑓
𝛾

[𝜉
𝑓
𝛾

(𝛾 − 𝛼̃) − 𝛽

𝑓
𝛾

̂𝜃
𝑓
𝛾

] ,

̇

̂𝜃
𝑔
𝛾

= Γ
𝑔
𝛾

Proj [̂𝜃
𝑔
𝛾

, 𝜉
𝑔
𝛾

𝛼 (𝛾 − 𝛼̃) , 𝛽

𝑔
𝛾

] ,

̇

̂𝜃
𝑓
𝑄

= Γ
𝑓
𝑄

(𝜉
𝑓
𝑄

̃

𝑄 − 𝛽

𝑓
𝑄

̂𝜃
𝑓
𝑄

) ,

̇

̂𝜃
𝑔
𝑄

= Γ
𝑔
𝑄

Proj [̂𝜃
𝑔
𝑄

, 𝜉
𝑔
𝑄

𝛿

𝑒
̃

𝑄, 𝛽

𝑔
𝑄

] ,

(45)

where Γ
𝑓
𝑥

= Γ
𝑇

𝑓
𝑥

and Γ
𝑔
𝑥

= Γ
𝑇

𝑔
𝑥

; 𝛽
𝑓
𝑥

and 𝛽

𝑔
𝑥

(𝑥 = 𝛾, 𝑄) are
design parameters.

The adaptive laws of Δ𝑀
𝑥

(𝑥 = ℎ, 𝛾, 𝛼, 𝑄) are given as
follows:

̇

̂

Δ

𝑀

ℎ
= 𝜎

ℎ
(

󵄨

󵄨

󵄨

󵄨

󵄨

̃

ℎ

󵄨

󵄨

󵄨

󵄨

󵄨

− 𝛽

ℎ
̂

Δ

𝑀

ℎ
)

̇

̂

Δ

𝑀

𝛾
= 𝜎

𝛾
(

󵄨

󵄨

󵄨

󵄨

𝛾

󵄨

󵄨

󵄨

󵄨

− 𝛽

𝛾
̂

Δ

𝑀

𝛾
)

̇

̂

Δ

𝑀

𝛼
= 𝜎

𝛼
(|𝛼̃| − 𝛽

𝛼
̂

Δ

𝑀

𝛼
)

̇

̂

Δ

𝑀

𝑄
= 𝜎

𝑄
(

󵄨

󵄨

󵄨

󵄨

󵄨

̃

𝑄

󵄨

󵄨

󵄨

󵄨

󵄨

− 𝛽

𝑄
̂

Δ

𝑀

𝑄
) ,

(46)

where 𝜎
𝑥
and 𝛽

𝑥
(𝑥 = ℎ, 𝛾, 𝛼, 𝑄) are design parameters.
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The desired control laws 𝛾0
𝑐
, 𝛼0
𝑐
, 𝑄0
𝑐
, and 𝛿

0

𝑒
are designed

as

𝛾

0

𝑐
= 𝑉

−1
[−𝑘

ℎ,1
̃

ℎ − 𝑘

ℎ,2
∫

𝑡

0

̃

ℎ𝑑𝜏 + 𝑘

ℎ,3
𝜆

ℎ
+

̇

ℎref

−

̂

Δ

𝑀

ℎ
tanh(

̃

ℎ

𝜀

ℎ

)] ,

(47)

𝛼

0

𝑐
= 𝑔

−1

𝛾
[−𝑘

𝛾,1
𝛾 − 𝑘

𝛾,2
∫

𝑡

0

𝛾𝑑𝜏 + 𝑘

𝛾,3
𝜆

𝛾
−

̂

𝑓

𝛾
− 𝐹

𝛾

− 𝑉

̃

ℎ + ̇𝛾

𝑐
−

̂

Δ

𝑀

𝛾
⋅ tanh(

𝛾

𝜀

𝛾

) −

𝑐

𝛾
𝛾𝛼

2

2

] ,

(48)

𝑄

0

𝑐
= −𝑘

𝛼,1
𝛼̃ − 𝑘

𝛼,2
∫

𝑡

0

𝛼̃𝑑𝜏 + 𝑘

𝛼,3
𝜆

𝛼
+

̂

𝑓

𝛾
+ 𝑔

𝛾
𝛼 − 𝐹

𝛼

− 𝑔

𝛾
𝛾 + 𝛼̇

𝑐
−

̂

Δ

𝑀

𝛼
tanh( 𝛼̃

𝜀

𝛼

) −

(𝑐

𝛼,1
+ 𝑐

𝛼,2
𝛼

2
) 𝛼̃

2

,

(49)

𝛿

0

𝑒
= 𝑔

−1

𝑄
[−𝑘

𝑄,1
̃

𝑄 − 𝑘

𝑄,2
∫

𝑡

0

̃

𝑄𝑑𝜏 + 𝑘

𝑄,3
𝜆

𝑄
−

̂

𝑓

𝑄
− 𝛼̃

+

̇

𝑄

𝑐
−

̂

Δ

𝑄
tanh(

̃

𝑄

𝜀

𝑄

)] ,

(50)

where 𝑘
𝑥,1
, 𝑘
𝑥,2

(𝑥 = ℎ, 𝛾, 𝛼, 𝑄) are positive constants to be
designed.

Substituting (47)–(50) into (39)–(42) gives

̇

̃

ℎ = −𝑘

ℎ,1
̃

ℎ − 𝑘

ℎ,2
∫

𝑡

0

̃

ℎ𝑑𝜏 + 𝑘

ℎ,3
𝜆

ℎ
+ 𝑉𝛾 + 𝑉 (𝛾

𝑐
− 𝛾

0

𝑐
)

+ [Δ

ℎ
−

̂

Δ

𝑀

ℎ
tanh(

̃

ℎ

𝜀

ℎ

)] ,

(51)

̇

𝛾̃ = −𝑘

𝛾,1
𝛾 − 𝑘

𝛾,2
∫

𝑡

0

𝛾𝑑𝜏 + 𝑘

𝛾,3
𝜆

𝛾
− 𝑉

̃

ℎ + 𝑔

𝛾
𝛼̃

−

𝑐

𝛾
𝛾𝛼

2

2

+

̃𝜃
𝑇

𝑓
𝛾

𝜉
𝑓
𝛾

+

̃𝜃
𝑇

𝑔
𝛾

𝜉
𝑔
𝛾

𝛼 + 𝜀

∗

𝑓
𝛾

+ 𝜀

∗

𝑔
𝛾

𝛼

+ 𝑔

𝛾
(𝛼

𝑐
− 𝛼

0

𝑐
) + [Δ

𝛾
−

̂

Δ

𝑀

𝛾
tanh(

𝛾

𝜀

𝛾

)] ,

(52)

̇

𝛼̃ = −𝑘

𝛼,1
𝛼̃ − 𝑘

𝛼,2
∫

𝑡

0

𝛼̃𝑑𝜏 + 𝑘

𝛼,3
𝜆

𝛼
− 𝑔

𝛾
𝛾

+

(𝑐

𝛼,1
+ 𝑐

𝛼,2
𝛼

2
) 𝛼̃

2

+

̃

𝑄 − (

̃𝜃
𝑇

𝑓
𝛾

𝜉
𝑓
𝛾

+

̃𝜃
𝑇

𝑔
𝛾

𝜉
𝑔
𝛾

𝛼)

− (𝜀

∗

𝑓
𝛾

+ 𝜀

∗

𝑔
𝛾

𝛼) + (𝑄

𝑐
− 𝑄

0

𝑐
)

+ [Δ

𝛼
−

̂

Δ

𝑀

𝛼
tanh( 𝛼̃

𝜀

𝛼

)] ,

(53)

̇

̃

𝑄 = −𝑘

𝑄,1
̃

𝑄 − 𝑘

𝑄,2
∫

𝑡

0

̃

𝑄𝑑𝜏 + 𝑘

𝑄,3
𝜆

𝑄
− 𝛼̃ +

̃𝜃
𝑇

𝑓
𝑄

𝜉
𝑓
𝑄

+

̃𝜃
𝑇

𝑔
𝑄

𝜉
𝑔
𝑄

𝛿

𝑒
+ 𝜀

∗

𝑓
𝑄

+ 𝜀

∗

𝑔
𝑄

𝛿

𝑒
+ 𝑔

𝑄
(𝛿

𝑒
− 𝛿

0

𝑒
)

+ [Δ

𝑄
−

̂

Δ

𝑀

𝑄
tanh(

̃

𝑄

𝜀

𝑄

)] .

(54)

The Lyapunov function can be designed as

𝑊

ℎ
=

1

2

̃

ℎ

2
+

𝑘

ℎ,2

2

(∫

𝑡

0

̃

ℎ𝑑𝜏)

2

+

1

2

𝜆

2

ℎ
+

1

2𝜎

ℎ

(

̃

Δ

𝑀

ℎ
)

2

,

𝑊

𝛾
=

1

2

𝛾

2
+

𝑘

𝛾,2

2

(∫

𝑡

0

𝛾𝑑𝜏)

2

+

1

2

𝜆

2

𝛾
+

1

2𝜎

𝛾

(

̃

Δ

𝑀

𝛾
)

2

+

1

2

̃𝜃
𝑇

𝑓
𝛾

Γ
−1

𝑓
𝛾

̃𝜃
𝑓
𝛾

+

1

2

̃𝜃
𝑇

𝑔
𝛾

Γ
−1

𝑔
𝛾

̃𝜃
𝑔
𝛾

,

𝑊

𝛼
=

1

2

𝛼̃

2
+

𝑘

𝛼,2

2

(∫

𝑡

0

𝛼̃𝑑𝜏)

2

+

1

2

𝜆

2

𝛼
+

1

2𝜎

𝛼

(

̃

Δ

𝑀

𝛼
)

2

,

𝑊

𝑄
=

1

2

̃

𝑄

2
+

𝑘

𝑄,2

2

(∫

𝑡

0

̃

𝑄𝑑𝜏)

2

+

1

2

𝜆

2

𝑄
+

1

2𝜎

𝑄

(

̃

Δ

𝑀

𝑄
)

2

+

1

2

̃𝜃
𝑇

𝑓
𝑄

Γ
−1

𝑓
𝑄

̃𝜃
𝑓
𝑄

+

1

2

̃𝜃
𝑇

𝑔
𝑄

Γ
−1

𝑔
𝑄

̃𝜃
𝑔
𝑄

.

(55)

Differentiating 𝑊

𝑥
(𝑥 = ℎ, 𝛾, 𝛼, 𝑄) and invoking (49)–

(52) yield

̇

𝑊

ℎ
= −𝑘

ℎ,1
̃

ℎ

2
+ 𝑘

ℎ,3
̃

ℎ𝜆

ℎ
− 𝜅

ℎ
𝜆

2

ℎ
+ 𝑉

̃

ℎ𝛾

+

̃

ℎ [Δ

ℎ
−

̂

Δ

𝑀

ℎ
tanh(

̃

ℎ

𝜀

ℎ

)] −

̃

Δ

𝑀

ℎ

̇

̂

Δ

𝑀

ℎ

𝜎

ℎ

,

̇

𝑊

𝛾
= −𝑘

𝛾,1
𝛾

2
+ 𝑘

𝛾,3
𝛾𝜆

𝛾
− 𝜅

𝛾
𝜆

2

𝛾
− 𝑉𝛾

̃

ℎ + 𝑔

𝛾
𝛾𝛼̃

−

𝑐

𝛾
𝛾

2
𝛼

2

2

+ 𝛾 (

̃𝜃
𝑇

𝑓
𝛾

𝜉
𝑓
𝛾

+

̃𝜃
𝑇

𝑔
𝛾

𝜉
𝑔
𝛾

𝛼)

+ 𝛾 (𝜀

∗

𝑓
𝛾

+ 𝜀

∗

𝑔
𝛾

𝛼)

+ 𝛾 [Δ

𝛾
−

̂

Δ

𝑀

𝛾
tanh(

𝛾

𝜀

𝛾

)] −

̃

Δ

𝑀

𝛾

̇

̂

Δ

𝑀

𝛾

𝜎

𝛾

+

̃𝜃
𝑇

𝑓
𝛾

Γ
−1

𝑓
𝛾

̇

̂𝜃
𝑓
𝛾

+

̃𝜃
𝑇

𝑔
𝛾

Γ
−1

𝑔
𝛾

̇

̂𝜃
𝑔
𝛾

,

̇

𝑊

𝛼
= −𝑘

𝛼,1
𝛼̃

2
+ 𝑘

𝛼,3
𝛼̃𝜆

𝛼
− 𝜅

𝛼
𝜆

2

𝛼
− 𝑔

𝛾
𝛼̃𝛾 + 𝛼̃

̃

𝑄

−

(𝑐

𝛼,1
+ 𝑐

𝛼,2
𝛼

2
) 𝛼̃

2

2

− 𝛼̃ (

̃𝜃
𝑇

𝑓
𝛾

𝜉
𝑓
𝛾

+

̃𝜃
𝑇

𝑔
𝛾

𝜉
𝑔
𝛾

𝛼)

− 𝛼̃ (𝜀

∗

𝑓
𝛾

+ 𝜀

∗

𝑔
𝛾

𝛼)

+ 𝛼̃ [Δ

𝛼
−

̂

Δ

𝑀

𝛼
tanh( 𝛼̃

𝜀

𝛼

)] −

̃

Δ

𝑀

𝛼

̇

̂

Δ

𝑀

𝛼

𝜎

𝛼

,
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̇

𝑊

𝑄
= −𝑘

𝑄,1
̃

𝑄

2
+ 𝑘

𝑄,3
̃

𝑄𝜆

𝑄
− 𝜅

𝑄
𝜆

2

𝑄
−

̃

𝑄𝛼̃

+

̃

𝑄(

̃𝜃
𝑇

𝑓
𝑄

𝜉
𝑓
𝑄

+

̃𝜃
𝑇

𝑔
𝑄

𝜉
𝑔
𝑄

𝛿

𝑒
)

+

̃

𝑄(𝜀

∗

𝑓
𝑄

+ 𝜀

∗

𝑔
𝑄

𝛿

𝑒
)

+

̃

𝑄[Δ

𝑄
−

̂

Δ

𝑀

𝑄
tanh(

̃

𝑄

𝜀

𝑄

)] −

̃

Δ

𝑀

𝑄

̇

̂

Δ

𝑀

𝑄

𝜎

𝑄

+

̃𝜃
𝑇

𝑓
𝑄

Γ
−1

𝑓
𝑄

̇

̂𝜃
𝑓
𝑄

+

̃𝜃
𝑇

𝑔
𝑄

Γ
−1

𝑔
𝑄

̇

̂𝜃
𝑔
𝑄

.

(56)

Invoking Lemma 5, we can derive

𝑥 [Δ

𝑥
−

̂

Δ

𝑀

𝑥
tanh( 𝑥

𝜀

𝑥

)]

≤ |𝑥|

̃

Δ

𝑀

𝑥
+

̂

Δ

𝑀

𝑥
[|𝑥| − 𝑥 tanh( 𝑥

𝜀

𝑥

)]

≤ |𝑥|

̃

Δ

𝑀

𝑥
+ 𝑘

𝑥

󵄨

󵄨

󵄨

󵄨

󵄨

̂

Δ

𝑀

𝑥

󵄨

󵄨

󵄨

󵄨

󵄨

𝜀

𝑥
,

(57)

where 𝑥 ∈ {ℎ, 𝛾, 𝛼, 𝑄}.
The following inequalities hold:

𝛾𝜀

∗

𝑔
𝛾

𝛼 ≤

𝑐

𝛾
𝛾

2
𝛼

2

2

+

𝜀

∗2

𝑔
𝛾

2𝑐

𝛾

−𝛼̃ (𝜀

∗

𝑓
𝛾

+ 𝜀

∗

𝑔
𝛾

𝛼) = −𝛼̃𝜀

∗

𝑓
𝛾

− 𝛼̃𝛼𝜀

∗

𝑔
𝛾

≤

𝑐

𝛼,1
𝛼̃

2

2

+

𝜀

∗2

𝑓
𝛾

2𝑐

𝛼,1

+

𝑐

𝛼,2
𝛼̃

2
𝛼

2

2

+

𝜀

∗2

𝑔
𝛾

2𝑐

𝛼,2

= 𝛼̃

2
(

𝑐

𝛼,1

2

+

𝑐

𝛼,2
𝛼

2

2

) +

𝜀

∗2

𝑓
𝛾

2𝑐

𝛼,1

+

𝜀

∗2

𝑔
𝛾

2𝑐

𝛼,2

,

(58)

where 𝑐
𝛾
> 0, 𝑐

𝛼,1
> 0, and 𝑐

𝛼,2
> 0.

Plugging (44)–(46) and (57)–(58) into (56) results in

̇

𝑊

ℎ
= −𝜇

ℎ,1
(

̃

ℎ − 𝜇

ℎ,2
𝜆

ℎ
)

2

− 𝜇

ℎ,3
̃

ℎ

2
+ 𝑉

̃

ℎ𝛾

+ 𝑘

ℎ

󵄨

󵄨

󵄨

󵄨

󵄨

̂

Δ

𝑀

ℎ

󵄨

󵄨

󵄨

󵄨

󵄨

𝜀

ℎ
− 𝛽

ℎ
̃

Δ

𝑀

ℎ
̂

Δ

𝑀

ℎ
,

̇

𝑊

𝛾
+

̇

𝑊

𝛼
≤ −𝜇

𝛾,1
(𝛾 − 𝜇

𝛾,2
𝜆

𝛾
)

2

− 𝜇

𝛼,1
(𝛼̃ − 𝜇

𝛼,2
𝜆

𝛼
)

2

− 𝜇

𝛾,3
(𝛾 − 𝜇

𝛾,4
𝜀

∗

𝑓
𝛾

)

2

− 𝜇

𝛼,3
𝛼̃

2

+ (𝜇

𝛾,5
+

1

2𝑐

𝛼,1

) 𝜀

∗2

𝑓
𝛾

+ (

1

2𝑐

𝛾

+

1

2𝑐

𝛼,2

) 𝜀

∗2

𝑔
𝛾

− 𝑉𝛾

̃

ℎ + 𝛼̃

̃

𝑄

+ 𝑘

𝛾

󵄨

󵄨

󵄨

󵄨

󵄨

̂

Δ

𝑀

𝛾

󵄨

󵄨

󵄨

󵄨

󵄨

𝜀

𝛾
+ 𝑘

𝛼

󵄨

󵄨

󵄨

󵄨

󵄨

̂

Δ

𝑀

𝛼

󵄨

󵄨

󵄨

󵄨

󵄨

𝜀

𝛼
− 𝛽

𝛾
̃

Δ

𝑀

𝛾
̂

Δ

𝑀

𝛾

− 𝛽

𝛼
̃

Δ

𝑀

𝛼
̂

Δ

𝑀

𝛼
− 𝛽

𝑓
𝛾

̃𝜃
𝑇

𝑓
𝛾

̂𝜃
𝑓
𝛾

− 𝛽

𝑔
𝛾

̃𝜃
𝑇

𝑔
𝛾

̂𝜃
𝑔
𝛾

− 𝜐

𝑓
𝛾

̃𝜃
𝑇

𝑓
𝛾

̂𝜃
𝑓
𝛾

̂𝜃
𝑇

𝑓
𝛾

𝜉
𝑓
𝛾

(𝛾 − 𝛼̃)

󵄩

󵄩

󵄩

󵄩

󵄩

󵄩

̂𝜃
𝑓
𝛾

󵄩

󵄩

󵄩

󵄩

󵄩

󵄩

2

− 𝜐

𝑔
𝛾

̃𝜃
𝑇

𝑔
𝛾

̂𝜃
𝑔
𝛾

̂𝜃
𝑇

𝑔
𝛾

𝜉
𝑔
𝛾

𝛼 (𝛾 − 𝛼̃)

󵄩

󵄩

󵄩

󵄩

󵄩

󵄩

̂𝜃
𝑔
𝛾

󵄩

󵄩

󵄩

󵄩

󵄩

󵄩

2
,

̇

𝑊

𝑄
≤ −𝜇

𝑄,1
(

̃

𝑄 − 𝜇

𝑄,2
𝜆

𝑄
)

2

− 𝜇

𝑄,3
[

̃

𝑄 − 𝜇

𝑄,4
(𝜀

∗

𝑓
𝑄

+ 𝜀

∗

𝑔
𝑄

𝛿

𝑒
)]

2

+ 𝜇

𝑄,5
(𝜀

∗

𝑓
𝑄

+ 𝜀

∗

𝑔
𝑄

𝛿

𝑒
)

2

−

̃

𝑄𝛼̃

+

̃

𝑄 (Δ

𝑄
−

̂

Δ

𝑄
) − 𝛽

𝑓
𝑄

̃𝜃
𝑇

𝑓
𝑄

̂𝜃
𝑓
𝑄

− 𝛽

𝑔
𝑄

̃𝜃
𝑇

𝑔
𝑄

̂𝜃
𝑔
𝑄

− 𝜐

𝑓
𝑄

̃𝜃
𝑇

𝑓
𝑄

̂𝜃
𝑓
𝑄

̂𝜃
𝑇

𝑓
𝑄

𝜉
𝑓
𝑄

̃

𝑄

󵄩

󵄩

󵄩

󵄩

󵄩

̂𝜃
𝑓
𝑄

󵄩

󵄩

󵄩

󵄩

󵄩

2

− 𝜐

𝑔
𝑄

̃𝜃
𝑇

𝑔
𝑄

̂𝜃
𝑔
𝑄

̂𝜃
𝑇

𝑔
𝑄

𝜉
𝑔
𝑄

𝛿

𝑒
̃

𝑄

󵄩

󵄩

󵄩

󵄩

󵄩

̂𝜃
𝑔
𝑄

󵄩

󵄩

󵄩

󵄩

󵄩

2
,

(59)

where 𝜇
𝑥,1

= 𝑘

2

𝑥,3
/(4𝜅

𝑥
), 𝜇
𝑥,2

= 2𝜅

𝑥
/𝑘

𝑥,3
, 𝜇
𝑥,3

= 𝑘

𝑥,1
− 𝜇

𝑥,1
,

𝜇

𝑥,4
= 1/(2𝜇

𝑥,3
), and 𝜇

𝑥,5
= 𝜇

𝑥,3
𝜇

2

𝑥,4
, 𝑥 ∈ {ℎ, 𝛾, 𝛼, 𝑄}.

When ‖

̂𝜃
𝑔
𝑥

‖ ≤ 𝜃

𝑀

𝑔
𝑥

and ̂𝜃
𝑇

𝑔
𝑥

≤ 0, 𝜐
𝑓
𝑥

= 𝜐

𝑔
𝑥

= 0 (𝑥 =

ℎ, 𝛾, 𝛼, 𝑄); when ‖

̂𝜃
𝑔
𝑥

‖ = 𝜃

𝑀

𝑔
𝑥

and ̂𝜃
𝑇

𝑔
𝑥

> 0, 𝜐
𝑓
𝑥

= 𝜐

𝑔
𝑥

= 1 (𝑥 =

ℎ, 𝛾, 𝛼, 𝑄).
Invoking Lemma 4, we can derive

𝑘

𝑥

󵄨

󵄨

󵄨

󵄨

󵄨

̂

Δ

𝑀

𝑥

󵄨

󵄨

󵄨

󵄨

󵄨

𝜀

𝑥
≤

𝛽

𝑥
(

̂

Δ

𝑀

𝑥
)

2

2

+

(𝑘

𝑥
𝜀

𝑥
)

2

2𝛽

𝑥

,

(60)

𝛽

𝑥
̃

Δ

𝑀

𝑥
̂

Δ

𝑀

𝑥
=

𝛽

𝑥

2

[− (

̃

Δ

𝑀

𝑥
)

2

− (

̂

Δ

𝑀

𝑥
)

2

+ (Δ

𝑀

𝑥
)

2

] ,
(61)

𝛽

𝑓
𝑥

̃𝜃
𝑇

𝑓
𝑥

̂𝜃
𝑓
𝑥

≤

𝛽

𝑓
𝑥

2

[−

󵄩

󵄩

󵄩

󵄩

󵄩

̃𝜃
𝑓
𝑥

󵄩

󵄩

󵄩

󵄩

󵄩

2

+

󵄩

󵄩

󵄩

󵄩

󵄩

𝜃
∗

𝑓
𝑥

󵄩

󵄩

󵄩

󵄩

󵄩

2

] ,

(62)

𝛽

𝑔
𝑥

̃𝜃
𝑇

𝑔
𝑥

̂𝜃
𝑔
𝑥

≤

𝛽

𝑔
𝑥

2

[−

󵄩

󵄩

󵄩

󵄩

󵄩

̃𝜃
𝑔
𝑥

󵄩

󵄩

󵄩

󵄩

󵄩

2

+

󵄩

󵄩

󵄩

󵄩

󵄩

𝜃
∗

𝑔
𝑥

󵄩

󵄩

󵄩

󵄩

󵄩

2

] .

(63)

Combining (60)–(63), we have the expression of

̇

𝑊

ℎ
= −𝜇

ℎ,1
(

̃

ℎ − 𝜇

ℎ,2
𝜆

ℎ
)

2

− 𝜇

ℎ,3
̃

ℎ

2
−

𝛽

𝑉

2

(

̃

Δ

𝑀

ℎ
)

2

+ 𝑉

̃

ℎ𝛾 +

𝑘

2

ℎ

2𝛽

ℎ

𝜀

2

ℎ
+

𝛽

ℎ

2

(Δ

𝑀

ℎ
)

2

,

(64)
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̇

𝑊

𝛾
+

̇

𝑊

𝛼
≤ −𝜇

𝛾,1
(𝛾 − 𝜇

𝛾,2
𝜆

𝛾
)

2

− 𝜇

𝛼,1
(𝛼̃ − 𝜇

𝛼,2
𝜆

𝛼
)

2

− 𝜇

𝛾,3
(𝛾 − 𝜇

𝛾,4
𝜀

∗

𝑓
𝛾

)

2

− 𝜇

𝛼,3
𝛼̃

2

−

𝛽

𝛾

2

(

̃

Δ

𝑀

𝛾
)

2

−

𝛽

𝛼

2

(

̃

Δ

𝑀

𝛼
)

2

−

𝛽

𝑓
𝛾

2

󵄩

󵄩

󵄩

󵄩

󵄩

󵄩

̃𝜃
𝑓
𝛾

󵄩

󵄩

󵄩

󵄩

󵄩

󵄩

2

−

𝛽

𝑔
𝛾

2

󵄩

󵄩

󵄩

󵄩

󵄩

󵄩

̃𝜃
𝑔
𝛾

󵄩

󵄩

󵄩

󵄩

󵄩

󵄩

2

− 𝑉𝛾

̃

ℎ

+ 𝛼̃

̃

𝑄 + (𝜇

𝛾,5
+

1

2𝑐

𝛼,1

) 𝜀

∗2

𝑓
𝛾

+ (

1

2𝑐

𝛾

+

1

2𝑐

𝛼,2

) 𝜀

∗2

𝑔
𝛾

+

𝑘

2

𝛾

2𝛽

𝛾

𝜀

2

𝛾

+

𝑘

2

𝛼

2𝛽

𝛼

𝜀

2

𝛼
+

𝛽

𝛾

2

(Δ

𝑀

𝛾
)

2

+

𝛽

𝛼

2

(Δ

𝑀

𝛼
)

2

+

𝛽

𝑓
𝛾

2

󵄩

󵄩

󵄩

󵄩

󵄩

󵄩

𝜃
∗

𝑓
𝛾

󵄩

󵄩

󵄩

󵄩

󵄩

󵄩

2

+

𝛽

𝑔
𝛾

2

󵄩

󵄩

󵄩

󵄩

󵄩

󵄩

𝜃
∗

𝑔
𝛾

󵄩

󵄩

󵄩

󵄩

󵄩

󵄩

2

(65)

̇

𝑊

𝑄
≤ −𝜇

𝑄,1
(

̃

𝑄 − 𝜇

𝑄,2
𝜆

𝑄
)

2

− 𝜇

𝑄,3
[

̃

𝑄 − 𝜇

𝑄,4
(𝜀

∗

𝑓
𝑄

+ 𝜀

∗

𝑔
𝑄

𝛿

𝑒
)]

2

−

𝛽

𝑄

2

(

̃

Δ

𝑀

𝑄
)

2

−

𝛽

𝑓
𝑄

2

󵄩

󵄩

󵄩

󵄩

󵄩

̃𝜃
𝑓
𝑄

󵄩

󵄩

󵄩

󵄩

󵄩

2

−

𝛽

𝑔
𝑄

2

󵄩

󵄩

󵄩

󵄩

󵄩

̃𝜃
𝑔
𝑄

󵄩

󵄩

󵄩

󵄩

󵄩

2

+ 𝜇

𝑄,5
(𝜀

∗

𝑓
𝑄

+ 𝜀

∗

𝑔
𝑄

𝛿

𝑒
)

2

+

𝑘

2

𝑄

2𝛽

𝑄

𝜀

2

𝑄
+

𝛽

𝑄

2

(Δ

𝑀

𝑄
)

2

+

𝛽

𝑓
𝑄

2

󵄩

󵄩

󵄩

󵄩

󵄩

󵄩

𝜃
∗

𝑓
𝛾

󵄩

󵄩

󵄩

󵄩

󵄩

󵄩

2

+

𝛽

𝑔
𝑄

2

󵄩

󵄩

󵄩

󵄩

󵄩

󵄩

𝜃
∗

𝑔
𝛾

󵄩

󵄩

󵄩

󵄩

󵄩

󵄩

2

.

(66)

3.3. Stability Analysis. The Lyapunov function can be
designed as

𝑊 = 𝑊

𝑉
+𝑊

ℎ
+𝑊

𝛾
+𝑊

𝛼
+𝑊

𝑄
. (67)

Combining (34) and (60)–(63) and differentiating𝑊with
respect to time result in

̇

𝑊 ≤ −𝜇

𝑉,3
[

̃

𝑉 − 𝜇

𝑉,4
(𝜀

∗

𝑓
𝑉

+ 𝜀

∗

𝑔
𝑉

Φ)]

2

− 𝜇

ℎ,3
̃

ℎ

2

− 𝜇

𝛾,3
(𝛾 − 𝜇

𝛾,4
𝜀

∗

𝑓
𝛾

)

2

− 𝜇

𝛼,3
𝛼̃

2

− 𝜇

𝑄,3
[

̃

𝑄 − 𝜇

𝑄,4
(𝜀

∗

𝑓
𝑄

+ 𝜀

∗

𝑔
𝑄

𝛿

𝑒
)]

2

−∑

𝑥

𝜇

𝑥,1
(𝑥 − 𝜇

𝑥,2
𝜆

𝑥
)

2
−

1

2

∑

𝑥

𝛽

𝑥
(

̃

Δ

𝑀

𝑥
)

2

−

1

2

∑

𝑥

𝛽

𝑓
𝑥

󵄩

󵄩

󵄩

󵄩

󵄩

̃𝜃
𝑓
𝑥

󵄩

󵄩

󵄩

󵄩

󵄩

2

−

1

2

∑

𝑥

𝛽

𝑔
𝑥

󵄩

󵄩

󵄩

󵄩

󵄩

̃𝜃
𝑔
𝑥

󵄩

󵄩

󵄩

󵄩

󵄩

2

+ 𝜇

𝑉,5
(𝜀

∗

𝑓
𝑉

+ 𝜀

∗

𝑔
𝑉

Φ)

2

+ (𝜇

𝛾,5
+

1

2𝑎

𝛼,1

) 𝜀

∗2

𝑓
𝛾

+ (

1

2𝑐

𝛾

+

1

2𝑐

𝛼,2

) ⋅ 𝜀

∗2

𝑔
𝛾

+ 𝜇

𝑄,5
(𝜀

∗

𝑓
𝑄

+ 𝜀

∗

𝑔
𝑄

𝛿

𝑒
)

2

+

1

2

∑

𝑥

𝛽

𝑓
𝑥

󵄩

󵄩

󵄩

󵄩

󵄩

𝜃
∗

𝑓
𝑥

󵄩

󵄩

󵄩

󵄩

󵄩

2

+

1

2

∑

𝑥

𝛽

𝑔
𝑥

󵄩

󵄩

󵄩

󵄩

󵄩

𝜃
∗

𝑔
𝑥

󵄩

󵄩

󵄩

󵄩

󵄩

2

+

1

2

∑

𝑥

(𝑘

𝑥
𝜀

𝑥
)

2

𝛽

𝑥

+

1

2

∑

𝑥

𝛽

𝑥
(Δ

𝑀

𝑥
)

2

,

(68)

where 𝑥 ∈ {𝑉, ℎ, 𝛾, 𝛼, 𝑄}.
Let

Σ = 𝜇

𝑉,5
(𝜀

𝑀

𝑓
𝑉

+ 𝜀

𝑀

𝑔
𝑉

Φ

𝑀
)

2

+ (𝜇

𝛾,5
+

1

2𝑐

𝛼,1

) ⋅ (𝜀

𝑀

𝑓
𝛾

)

2

+ (

1

2𝑐

𝛾

+

1

2𝑐

𝛼,2

)(𝜀

𝑀

𝑔
𝛾

)

2

+ 𝜇

𝑄,5
(𝜀

𝑀

𝑓
𝑄

+ 𝜀

𝑀

𝑔
𝑄

𝛿

𝑀

𝑒
)

2

+

1

2

∑

𝑥

[

(𝑘

𝑥
𝜀

𝑥
)

2

𝛽

𝑥

+ 𝛽

𝑥
(Δ

𝑀

𝑥
)

2

+ 𝛽

𝑓
𝑥

(𝜃
𝑀

𝑓
𝑥

)

2

+ 𝛽

𝑔
𝑥

(𝜃
𝑀

𝑔
𝑥

)

2

] .

(69)

Define

Ω

𝑉̃
= {

̃

𝑉 |

󵄨

󵄨

󵄨

󵄨

󵄨

̃

𝑉

󵄨

󵄨

󵄨

󵄨

󵄨

≤ 𝜇

𝑉,4
(𝜀

𝑀

𝑓
𝑉

+ 𝜀

𝑀

𝑔
𝑉

Φ

𝑀
) + √

Σ

𝜇

𝑉,3

} ,

Ω

ℎ̃
= {

̃

ℎ |

󵄨

󵄨

󵄨

󵄨

󵄨

̃

ℎ

󵄨

󵄨

󵄨

󵄨

󵄨

≤ √

Σ

𝜇

ℎ,3

} ,

Ω

𝛾
= {𝛾 |

󵄨

󵄨

󵄨

󵄨

𝛾

󵄨

󵄨

󵄨

󵄨

≤ 𝜇

𝛾,4
𝜀

𝑀

𝑓
𝛾

+
√

Σ

𝜇

𝛾,3

} ,

Ω

𝛼̃
= {𝛼̃ | |𝛼̃| ≤ √

Σ

𝜇

𝛼,3

} ,

Ω

𝑄̃
= {

̃

𝑄 |

󵄨

󵄨

󵄨

󵄨

󵄨

̃

𝑄

󵄨

󵄨

󵄨

󵄨

󵄨

≤ 𝜇

𝑄,4
(𝜀

𝑀

𝑓
𝑄

+ 𝜀

𝑀

𝑔
𝑄

𝛿

𝑀

𝑒
) + √

Σ

𝜇

𝑄,3

} ,

Ω

Δ̃
𝑀

𝑥

= {

̃

Δ

𝑀

𝑥
|

󵄩

󵄩

󵄩

󵄩

󵄩

̃

Δ

𝑀

𝑥

󵄩

󵄩

󵄩

󵄩

󵄩

≤ √

Σ

𝛽

𝑥

} ,

Ω

𝜃̃
𝑓𝑥

= {

̃𝜃
𝑓
𝑥

|

󵄩

󵄩

󵄩

󵄩

󵄩

̃𝜃
𝑓
𝑥

󵄩

󵄩

󵄩

󵄩

󵄩

≤
√

Σ

𝛽

𝑓
𝑥

} ,

Ω

𝜃̃
𝑔𝑥

= {

̃𝜃
𝑔
𝑥

|

󵄩

󵄩

󵄩

󵄩

󵄩

̃𝜃
𝑔
𝑥

󵄩

󵄩

󵄩

󵄩

󵄩

≤
√

Σ

𝛽

𝑔
𝑥

} ,

(70)

where Φ𝑀 = max{|Φ𝐿|, |Φ𝑈|}; 𝛿𝐿
𝑒
= max{|𝛿𝐿

𝑒
|, |𝛿

𝑈

𝑒
|}.
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Let

𝑘

𝑥,1
>

𝑘

2

𝑥,3

(4𝜅

𝑥
)

, 𝑘

𝑥,2
> 0, 𝑘

𝑥,3
> 0, 𝜅

𝑥
> 0,

Γ
𝑓
𝑥

= Γ
𝑇

𝑓
𝑥

> 0, Γ
𝑔
𝑥

= Γ
𝑇

𝑔
𝑥

> 0, 𝛽

𝑓
𝑥

> 0, 𝛽

𝑔
𝑥

> 0,

𝜎

𝑥
> 0, 𝛽

𝑥
> 0;

(71)

If 𝑥, ̃𝜃
𝑓
𝑥

, ̃𝜃
𝑔
𝑥

and ̃

Δ

𝑀

𝑥
, 𝑥 ∈ {

̃

𝑉,

̃

ℎ, 𝛾, 𝛼̃,

̃

𝑄}, do not belong to the
compact set Ω

𝑥
, Ω
𝜃̃
𝑓𝑥

, Ω
𝜃̃
𝑔𝑥

and Ω
Δ̃
𝑀

𝑥

, respectively, ̇

𝑊 ≤ 0. 𝑥,
̃𝜃
𝑓
𝑥

, ̃𝜃
𝑔
𝑥

, and ̃

Δ

𝑀

𝑥
are bounded. Further, 𝜆

𝑥
also is bounded

according to (66). By regulating the designed parameters, the
radius of Ω

𝑥
, Ω
𝑊̃
𝑓𝑥

, Ω
𝑊̃
𝑔𝑥

, and Ω

Δ̃
𝑀

𝑥

can be made arbitrarily
small.

Theorem 8. Consider the system of (1) under Assumptions 3
and 6, auxiliary analytical system (20) and (44), controllers
(23) and (47)–(50), adaptive laws (21) and (45), and upper
bound estimation of system error (22) and (46). If (71) is
satisfied, all the signals involved are bounded.

4. Simulation Results

Simulations are done to illustrate the effectiveness of the
robust adaptive approximate back-stepping control scheme
proposed in the previous section. The vehicle model param-
eters are referred to in [27]. The damping of flexibility is
𝜁

𝑖
= 0.02, 𝑖 = 1, 2, 3, and vibrational frequencies are 𝜔

1
=

27.8944 rad/s, 𝜔
2
= 76.8933 rad/s, and 𝜔

3
= 150.752 6 rad/s.

The aircraft is commanded to perform a cruising flight
mission that the initial height is 25908m and dynamic
pressure is 95760 Pa. The initial trim conditions are designed
as follows: 𝛾 = 0

∘, 𝛼 = 0.6132

∘, 𝑄 = 0

∘
/s, B = 0.132 9, 𝛿

𝑒
=

9.0081

∘, 𝜂
1
= 1.889m⋅kg0.5/m0.5, 𝜂

2
= −0.028m⋅kg0.5/m0.5,

𝜂

3
= −0.007 323m⋅kg0.5/m0.5, and ̇𝜂

𝑖
= 0m/s⋅kg0.5/m0.5,

𝑖 = 1, 2, 3.
The reference commands of velocity and altitude are

generated via the following filters:

𝑉ref (𝑠)

𝑉

𝑐 (
𝑠)

=

0.03

2

𝑠

2
+ 2 × 0.95 × 0.03 × 𝑠 + 0.03

2
,

ℎref (𝑠)

ℎ

𝑐 (
𝑠)

=

0.03

2

𝑠

2
+ 2 × 0.95 × 0.03 × 𝑠 + 0.03

2
.

(72)

The control laws are limited by Φ ∈ [0.1, 1.2], 𝛿
𝑒

∈

[−15

∘
, 15

∘
], 𝛼

𝑐
∈ [−5

∘
, 5

∘
], 𝛾

𝑐
∈ [−5

∘
, 5

∘
], and 𝑄

𝑐
∈

[−10

∘
/s, 10∘/s]. The bandwidth of Φ, 𝛿

𝑒
, 𝛾
𝑐
, 𝛼
𝑐
, and 𝑄

𝑐
is

limited by 20 rad/s, 20 rad/s, 30 rad/s, 40 rad/s, and 60 rad/s,
respectively.

The design parameters of controller are proposed as
follows: 𝜅

𝑥
= 0.1, 𝜀

𝑥
= 0.01, 𝑘

𝑉,1
= 𝑘

ℎ,1
= 0.4, 𝑘

𝛾⋅1
=

𝑘

𝛼⋅1
= 𝑘

𝑄⋅1
= 1, 𝑘

𝑥⋅2
= 0.01, and 𝑘

𝑥⋅3
= 0.1. The adaptive

law of RBF is considered as follows: Γ
𝑓
𝑉

= 0.01 × 𝐼

625×625
,

Γ
𝑔
𝑉

= 0.1 × 𝐼

625×625
, Γ
𝑓
𝛾

= 0.01 × 𝐼

125×125
, Γ
𝑔
𝛾

= 0.1 × 𝐼

625×625
,

Γ
𝑓
𝑄

= 0.01 × 𝐼

625×625
, Γ
𝑔
𝑄

= 0.1 × 𝐼

3125×3125
, 𝛽
𝑓
𝑥

= 𝛽

𝑔
𝑥

= 0.1,
𝛽

𝑥
= 0.1, 𝜎

𝑥
= 1, and the upper bound of weight vectors
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Figure 2: Response curves of velocity and velocity tracking error
(Case 1).
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𝜃
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𝑉
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𝑔
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𝑓
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𝜃

𝑀

𝑔
𝑄
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4.1. Trajectory Tracking Simulation without External Distur-
bance. To show efficiency of the proposed control law, the
following two cases are proposed.

Case 1. The track height command is a square wave signal,
whose amplitude Δℎ

𝑐
= 1524m and period is 600 s.
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Figure 5: Response curves of flight path angle, attack angle, and
pitch rate (Case 1).

Case 2. The track height command is a square wave signal,
whose amplitude Δℎ

𝑐
= 3048m and period is 600 s.

Time responses of velocity, altitude, flight path angle,
attack angle, pitch rate, fuel equivalence ratio, elevator deflec-
tion, and flexible states in two cases are given in Figures 2–11.

Time responses to altitude step change in Case 1 are
presented in Figures 2–6. As shown in Figures 2 and 3, the
velocity and altitude can track their commands timely and
without any steady tracking errors. The control inputs and
attitude angles are smooth and within their bounds, just
as shown in Figures 4 and 5. The flexible states can reach
equilibrium state, which can be observed from Figure 6.

Time responses to altitude step change in Case 2 are
presented in Figures 7–11. It can be seen fromFigure 9 that the
saturation occurs in elevator deflection during simulation,
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Figure 6: The flexible states (Case 1).
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Figure 7: Response curves of velocity and velocity tracking error
(Case 2).

but the controller still provides a good track characteristic
according to Figures 7–10. Furthermore, the flexible states
also can maintain stability, which can be observed from
Figure 11.

4.2. Trajectory Tracking Simulationwith ExternalDisturbance.
To illustrate the robustness to external disturbance of the
control laws developed herein, two vertical wind disturbances
whose amplitudes are 17m/s and 14m/s are added to the
control system in 100 s and 300 s, respectively, and the
sustaining time of wind disturbance is 10 s. The additional
attack angle with wind disturbance can be expressed as

𝛼

𝑢
= arctan

𝑢 sin 𝛾
𝑉 + 𝑢 cos 𝛾

,

𝛼

𝑤
= arctan

𝑤 cos 𝛾
𝑉 − 𝑤 sin 𝛾

,

(73)
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where 𝛼
𝑢
and 𝛼

𝑤
are horizontal additional attack angle and

vertical additional attack angle, respectively; 𝑢 and𝑤 are level
wind speed and vertical wind speed, respectively.

The aircraft is commanded to perform a cruising flight
mission that the initial height is 25908m and dynamic
pressure is 95760 Pa. When the simulation time 𝑡 ≤ 215 s,
altitude follows the step command with 50 ft/s; when the
simulation time 215 s ≤ 𝑡 ≤ 355 s, altitude follows the step
command with 139 ft/s.

The simulation results are illustrated in Figures 12–15.
It can be seen from Figure 14 that the saturation occurs in
elevator deflection with wind disturbance in 100 s and 300 s,
but the controller still provides a good track characteristic
according to Figures 12–15, which indicate that the pro-
posed adaptive neural back-stepping controller has a good
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Figure 10: Response curves of flight path angle, attack angle, and
pitch rate (Case 2).
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Figure 11: The flexible states (Case 2).

performance on disposing input constraint under external
disturbance.

5. Conclusions

An adaptive neural back-stepping control design is presented
in this paper for hypersonic vehicle with input constraint and
uncertain aerodynamic parameters. To reduce the complexity
of the controller design, the nonlinear model is divided
into two subsystems, and the adaptive neural back-stepping
controllers are developed for them, respectively. The neural
network based radial basis function is designed to approx-
imate the unknown system nonlinearity, which needs less
knowledge of dynamic model. In order to eliminate the
problem of “explosion of term,” a second-order reference
model is designed for the precise estimation of the derivatives
of virtual control laws. Expressly, the auxiliary systems are
constructed to eliminate the saturation effect, where a novel
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auxiliary error compensation scheme is proposed. A com-
prehensive Lyapunov based stability analysis is provided to
show that the control design achieves ultimate bounded-
ness tracking for the hypersonic vehicle. Simulation results
demonstrate that the proposed control strategy can provide
satisfactory velocity and altitude tracking performance with
input constraint and uncertain aerodynamic parameters.
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