229 research outputs found
Self-normalized Cram\'{e}r type moderate deviations for the maximum of sums
Let be independent random variables with zero means and finite
variances, and let and . A
Cram\'{e}r type moderate deviation for the maximum of the self-normalized sums
is obtained. In particular, for identically
distributed it is proved that uniformly for
under the optimal finite third moment of .Comment: Published in at http://dx.doi.org/10.3150/12-BEJ415 the Bernoulli
(http://isi.cbs.nl/bernoulli/) by the International Statistical
Institute/Bernoulli Society (http://isi.cbs.nl/BS/bshome.htm
Multimodal Federated Learning via Contrastive Representation Ensemble
With the increasing amount of multimedia data on modern mobile systems and
IoT infrastructures, harnessing these rich multimodal data without breaching
user privacy becomes a critical issue. Federated learning (FL) serves as a
privacy-conscious alternative to centralized machine learning. However,
existing FL methods extended to multimodal data all rely on model aggregation
on single modality level, which restrains the server and clients to have
identical model architecture for each modality. This limits the global model in
terms of both model complexity and data capacity, not to mention task
diversity. In this work, we propose Contrastive Representation Ensemble and
Aggregation for Multimodal FL (CreamFL), a multimodal federated learning
framework that enables training larger server models from clients with
heterogeneous model architectures and data modalities, while only communicating
knowledge on public dataset. To achieve better multimodal representation
fusion, we design a global-local cross-modal ensemble strategy to aggregate
client representations. To mitigate local model drift caused by two
unprecedented heterogeneous factors stemming from multimodal discrepancy
(modality gap and task gap), we further propose two inter-modal and intra-modal
contrasts to regularize local training, which complements information of the
absent modality for uni-modal clients and regularizes local clients to head
towards global consensus. Thorough evaluations and ablation studies on
image-text retrieval and visual question answering tasks showcase the
superiority of CreamFL over state-of-the-art FL methods and its practical
value.Comment: ICLR 2023. Code is available at https://github.com/FLAIR-THU/CreamF
Simultaneous Confidence Bands in Nonlinear Regression Models with Nonstationarity
We consider nonparametric estimation of the regression function g(·) in a nonlinear regression model Yt = g(Xt) + σ(Xt)et, where the regressor (Xt) is a nonstationary unit root process and the error (et) is a sequence of independent and identically distributed (i.i.d.) random variables. With proper centering and scaling, the maximum deviation of the local linear estimator of the regression function g is shown to be asymptotically Gumbel. Based on the latter result, we construct simultaneous confidence bands for g, which can be used to test patterns of the regression function. Our results substantially extend existing ones which typically require independent or stationary weakly dependent regressors. Furthermore, we examine the finite sample behavior of the proposed approach via the simulated and real data examples
Multimodal Molecular Pretraining via Modality Blending
Self-supervised learning has recently gained growing interest in molecular
modeling for scientific tasks such as AI-assisted drug discovery. Current
studies consider leveraging both 2D and 3D molecular structures for
representation learning. However, relying on straightforward alignment
strategies that treat each modality separately, these methods fail to exploit
the intrinsic correlation between 2D and 3D representations that reflect the
underlying structural characteristics of molecules, and only perform
coarse-grained molecule-level alignment. To derive fine-grained alignment and
promote structural molecule understanding, we introduce an atomic-relation
level "blend-then-predict" self-supervised learning approach, MoleBLEND, which
first blends atom relations represented by different modalities into one
unified relation matrix for joint encoding, then recovers modality-specific
information for 2D and 3D structures individually. By treating atom
relationships as anchors, MoleBLEND organically aligns and integrates visually
dissimilar 2D and 3D modalities of the same molecule at fine-grained atomic
level, painting a more comprehensive depiction of each molecule. Extensive
experiments show that MoleBLEND achieves state-of-the-art performance across
major 2D/3D molecular benchmarks. We further provide theoretical insights from
the perspective of mutual-information maximization, demonstrating that our
method unifies contrastive, generative (cross-modality prediction) and
mask-then-predict (single-modality prediction) objectives into one single
cohesive framework
CapsFusion: Rethinking Image-Text Data at Scale
Large multimodal models demonstrate remarkable generalist ability to perform
diverse multimodal tasks in a zero-shot manner. Large-scale web-based
image-text pairs contribute fundamentally to this success, but suffer from
excessive noise. Recent studies use alternative captions synthesized by
captioning models and have achieved notable benchmark performance. However, our
experiments reveal significant Scalability Deficiency and World Knowledge Loss
issues in models trained with synthetic captions, which have been largely
obscured by their initial benchmark success. Upon closer examination, we
identify the root cause as the overly-simplified language structure and lack of
knowledge details in existing synthetic captions. To provide higher-quality and
more scalable multimodal pretraining data, we propose CapsFusion, an advanced
framework that leverages large language models to consolidate and refine
information from both web-based image-text pairs and synthetic captions.
Extensive experiments show that CapsFusion captions exhibit remarkable
all-round superiority over existing captions in terms of model performance
(e.g., 18.8 and 18.3 improvements in CIDEr score on COCO and NoCaps), sample
efficiency (requiring 11-16 times less computation than baselines), world
knowledge depth, and scalability. These effectiveness, efficiency and
scalability advantages position CapsFusion as a promising candidate for future
scaling of LMM training.Comment: CVPR 2024. Code & Dataset: https://github.com/baaivision/CapsFusio
Exploring the Impact of the Digital Economy on Carbon Emission Efficiency Under Factor Misallocation Constraints: New Insights From China
The digital economy has introduced far-reaching innovations in the fields of government governance, enterprise production, and social operation. How to motivate the economic development mode towards a low-carbon and greenway transformation through the digital economy is a major issue concerning the Chinese government. However, there is scarce evidence to interpret the role mechanism of the digital economy on carbon emission efficiency from the factor misallocation scenario. Taking a database from 30 provincial-level administrative regions for the period from 2011 to 2019 in China as an example, the paper examines the effect of the digital economy on carbon emission efficiency, as well as explores its role mechanism deeply in terms of factor misallocation (capital misallocation and labor misallocation). The results suggest that there is a significant potential for the digital economy to contribute to carbon emission efficiency, as well as this finding, is valid when considering both the endogeneity issue and a series of robustness checks. Also, the digital economy can significantly contribute to carbon efficiency in both southern and northern regions, but more strongly in the northern region. Besides, the digital economy can inhibit the factor misallocation (labor misallocation and capital misallocation) level which ultimately improves carbon emission efficiency. Finally, as a digital economy, it can positively impact carbon efficiency in the long run by mitigating factor misallocation (labor misallocation and capital misallocation)
Objective identification and forecast method of PM2.5 pollution based on medium- and long-term ensemble forecasts in Beijing-Tianjin-Hebei region and its surrounding areas
Accurate long-term forecasts of PM2.5 pollution are essential to mitigating health risks and formulating pollutant control strategies for decision-makers in China. In this study, an objective identification and forecast method for PM2.5 pollution (OIF-PM2.5) is developed based on medium- and long-term ensemble forecasts of PM2.5 in Beijing-Tianjin-Hebei region and its surrounding areas. The results show that the observed PM2.5 pollution ratio increases with the aggravating PM2.5 pollution. For example, the ratio of meteorological stations with heavy pollution is 4.4 times that of light pollution and 3.9 times that of moderate pollution. In addition, the correlation coefficients between observations and forecasts are above 0.60 for all forecast leading times. Statistical results show that the average accuracy for forecasts with the leading times of 1–3 days, 4–7 days, and 8–15 days are 74.1%, 81.3%, and 72.9% respectively, indicating that the OIF-PM2.5 method has a high reliability in forecasts with the leading times of 1–15 days. The OIF-PM2.5 method is further applied in a severe PM2.5 pollution episode in the December of 2021, and the average forecast precision in forecasts with the leading times of 6–8 days reaches as high as 100%, showing a certain reference value for PM2.5 forecasts
Generative Pretraining in Multimodality
We present Emu, a Transformer-based multimodal foundation model, which can
seamlessly generate images and texts in multimodal context. This omnivore model
can take in any single-modality or multimodal data input indiscriminately
(e.g., interleaved image, text and video) through a one-model-for-all
autoregressive training process. First, visual signals are encoded into
embeddings, and together with text tokens form an interleaved input sequence.
Emu is then end-to-end trained with a unified objective of classifying the next
text token or regressing the next visual embedding in the multimodal sequence.
This versatile multimodality empowers the exploration of diverse pretraining
data sources at scale, such as videos with interleaved frames and text,
webpages with interleaved images and text, as well as web-scale image-text
pairs and video-text pairs. Emu can serve as a generalist multimodal interface
for both image-to-text and text-to-image tasks, and supports in-context image
and text generation. Across a broad range of zero-shot/few-shot tasks including
image captioning, visual question answering, video question answering and
text-to-image generation, Emu demonstrates superb performance compared to
state-of-the-art large multimodal models. Extended capabilities such as
multimodal assistants via instruction tuning are also demonstrated with
impressive performance.Comment: Code and Demo: https://github.com/baaivision/Em
- …