11 research outputs found

    Enhancing effect of vitexin on osteogenic activity of murine pre-osteoblastic MC3T3-E1 cells

    Get PDF
    Vitexin (5,7,4-trihydroxyflavone-8-glucoside), a natural flavone present in a variety of plants, is well known for its rich pharmacological properties. However, its osteogenic activity remains unclear to date. The purpose of this study was to explore the effects of vitexin on osteogenic activity in murine pre-osteoblastic MC3T3-E1 cells using the MTT assay for cell proliferation, alkaline phosphatase (ALP) activity assay for cell differentiation, and Von Kossa staining for cell mineralization. Quantitative real-time PCR was used for the detection of osteocalcin (OCN) mRNA expression in cells. Furthermore, effects of vitexin on the differentiation and matrix mineralization of dexamethasone (DEX)- suppressed cells was also investigated. The results showed vitexin could significantly enhance cell proliferation in a low concentration range of 10-10-10-6 μg mL-1. ALP activity was significantly increased after the cells were treated with vitexin at 10-8 and 10-6 μg mL-1. The expression levels of the osteogenic OCN gene in cells treated with vitexin at 10-6, 10- 8, and 10-10 μg mL-1 were improved by 3.1-fold, 5.8-fold, and 4.2-fold over the control, respectively. Additionally, vitexin (10-8 μg mL-1) significantly alleviated the inhibitory effect of osteoblast differentiation and mineralization induced by DEX. Collectively, our findings suggest vitexin could enhance cell proliferation and osteogenic differentiation of MC3T3-E1 cells, as well as rescue the inhibitory effect of cell differentiation and matrix mineralization induced by DEX. Therefore, vitexin may be useful as a promising therapeutic agent for bone disease and plays an important role in the prevention of glucocorticoid-induced osteoporosis

    The ZuoJinWan formula inhibits glycolysis of cisplatin resistant gastric cancer cells via p53 acetylation

    No full text
    Introduction: Gastric cancer is one of the common malignancies worldwide, and drug resistance is a major factor contributing to the difficulty of treatment in gastric cancer. Zuojinwan (ZJW) has been found to exhibit a certain inhibitory effect on tumor cells. However, the molecular mechanisms of ZJW reversing drug resistance in gastric cancer are still unclear. Method: Human gastric cancer cisplatin-resistant cells SGC-7901/DDP and BGC-823/DDP were divided into control groups, DDP groups (10 μg/mL), 2-DG (5 mM) groups, and ZJW (50 μg/mL) combined with DDP (10 μg/mL) groups. After 48 h of culture, cell proliferation inhibition rate, glucose uptake rate, ATP, and lactate production were detected. Following lentiviral transfection to overexpress GLUT1 and HDAC1, western blot analysis was employed to examine the expression of HDAC1, P53, Ace-p53, and glucose metabolism-related proteins such as GLUT1, LDHA, HK II in the cells. Results: The combination of ZJW and DDP significantly inhibits the proliferation and glycolysis of cisplatin resistant gastric cancer cells. Compared with the DDP group, the combination of ZJW and DDP exhibited a higher inhibition rate (P < 0.01), accompanied by a reduction in the expression of HDAC1 and P53 proteins. Conclusions: Zuojinwan can enhance the proliferation inhibition rate of SGC-7901/DDP and BGC-823/DDP cells, attenuate glycolysis, and reduce chemotherapy resistance. Its mechanism may be associated with the inhibition of HDAC1/P53 axis activity

    A rabies virus-vectored vaccine expressing two copies of the Marburg virus glycoprotein gene induced neutralizing antibodies against Marburg virus in humanized mice

    No full text
    ABSTRACTMarburg virus disease (MVD) is a lethal viral haemorrhagic fever caused by Marburg virus (MARV) with a case fatality rate as high as 88%. There is currently no vaccine or antiviral therapy approved for MVD. Due to high variation among MARV isolates, vaccines developed against one strain fail to protect against other strains. Here we report that three recombinant rabies virus (RABV) vector vaccines encoding two copies of GPs covering both MARV lineages induced pseudovirus neutralizing antibodies in BALB/c mice. Furthermore, high-affinity human neutralizing antibodies were isolated from a humanized mouse model. The three vaccines produced a Th1-biased serological response similar to that of human patients. Adequate sequential immunization enhanced the production of neutralizing antibodies. Virtual docking suggested that neutralizing antibodies induced by the Angola strain seemed to be able to hydrogen bond to the receptor-binding site (RBS) in the GP of the Ravn strain through hypervariable regions 2 (CDR2) and CDR3 of the VH region. These findings demonstrate that three inactivated vaccines are promising candidates against different strains of MARV, and a novel fully humanized neutralizing antibody against MARV was isolated

    Genetically Modified Rabies Virus Vector-Based Rift Valley Fever Virus Vaccine is Safe and Induces Efficacious Immune Responses in Mice

    No full text
    Rift Valley fever virus (RVFV), which causes Rift Valley fever (RVF), is a mosquito-borne zoonotic pathogen that causes serious morbidity and mortality in livestock and humans. RVF is a World Health Organization (WHO) priority disease and, together with rabies, is a major health burden in Africa. Here, we present the development and characterization of an inactivated recombinant RVFV and rabies virus (RABV) vaccine candidate (rSRV9-eGn). Immunization with rSRV9-eGn stimulated the production of RVFV-specific IgG antibodies and induced humoral and cellular immunity in mice but did not induce the production of neutralizing antibodies. IgG1 and IgG2a were the main isotypes observed by IgG subtype detection, and IgG3 antibodies were not detected. The ratios of IgG1/IgG2a &gt; 1 indicated a Type 2 humoral immune response. An effective vaccine is intended to establish a long-lived population of memory T cells, and mice generated memory cells among the proliferating T cell population after immunization with rSRV9-eGn, with effector memory T cells (TEM) as the major population. Due to the lack of prophylactic treatment experiments, it is impossible to predict whether this vaccine can protect animals from RVFV infection with only high titres of anti-RVFV IgG antibodies and no neutralizing antibodies induced, and thus, protection confirmation needs further verification. However, this RVFV vaccine designed with RABV as the vector provides ideas for the development of vaccines that prevent RVFV and RABV infections

    Nucleic acid visualization assay for Middle East Respiratory Syndrome Coronavirus (MERS-CoV) by targeting the UpE and N gene.

    No full text
    Since its first emergence in 2012, cases of infection with Middle East respiratory syndrome coronavirus (MERS-CoV) have continued to occur. At the end of January 2020, 2519 laboratory confirmed cases with a case-fatality rate of 34.3% have been reported. Approximately 84% of human cases have been reported in the tropical region of Saudi Arabia. The emergence of MERS-CoV has highlighted need for a rapid and accurate assay to triage patients with a suspected infection in a timely manner because of the lack of an approved vaccine or an effective treatment for MERS-CoV to prevent and control potential outbreaks. In this study, we present two rapid and visual nucleic acid assays that target the MERS-CoV UpE and N genes as a panel that combines reverse transcription recombinase polymerase amplification with a closed vertical flow visualization strip (RT-RPA-VF). This test panel was designed to improve the diagnostic accuracy through dual-target screening after referencing laboratory testing guidance for MERS-CoV. The limit of detection was 1.2×101 copies/μl viral RNA for the UpE assay and 1.2 copies/μl viral RNA for the N assay, with almost consistent with the sensitivity of the RT-qPCR assays. The two assays exhibited no cross-reactivity with multiple CoVs, including the bat severe acute respiratory syndrome related coronavirus (SARSr-CoV), the bat coronavirus HKU4, and the human coronaviruses 229E, OC43, HKU1 and severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Furthermore, the panel does not require sophisticated equipment and provides rapid detection within 30 min. This panel displays good sensitivity and specificity and may be useful to rapidly detect MERS-CoV early during an outbreak and for disease surveillance

    Table_1_Discovery and characterization of SARS-CoV-2 reactive and neutralizing antibodies from humanized CAMouseHG mice through rapid hybridoma screening and high-throughput single-cell V(D)J sequencing.xlsx

    No full text
    The coronavirus disease 2019 pandemic has caused more than 532 million infections and 6.3 million deaths to date. The reactive and neutralizing fully human antibodies of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) are effective detection tools and therapeutic measures. During SARS-CoV-2 infection, a large number of SARS-CoV-2 reactive and neutralizing antibodies will be produced. Most SARS-CoV-2 reactive and neutralizing fully human antibodies are isolated from human and frequently encoded by convergent heavy-chain variable genes. However, SARS-CoV-2 viruses can mutate rapidly during replication and the resistant variants of neutralizing antibodies easily survive and evade the immune response, especially in the face of such focused antibody responses in humans. Therefore, additional tools are needed to develop different kinds of fully human antibodies to compensate for current deficiency. In this study, we utilized antibody humanized CAMouseHG mice to develop a rapid antibody discovery method and examine the antibody repertoire of SARS-CoV-2 RBD-reactive hybridoma cells derived from CAMouseHG mice by using high-throughput single-cell V(D)J sequencing analysis. CAMouseHG mice were immunized by 28-day rapid immunization method. After electrofusion and semi-solid medium screening on day 12 post-electrofusion, 171 hybridoma clones were generated based on the results of SARS-CoV-2 RBD binding activity assay. A rather obvious preferential usage of IGHV6-1 family was found in these hybridoma clones derived from CAMouseHG mice, which was significantly different from the antibodies found in patients with COVID-19. After further virus neutralization screening and antibody competition assays, we generated a noncompeting two-antibody cocktail, which showed a potent prophylactic protective efficacy against SARS-CoV-2 in cynomolgus macaques. These results indicate that humanized CAMouseHG mice not only provide a valuable platform to obtain fully human reactive and neutralizing antibodies but also have a different antibody repertoire from humans. Thus, humanized CAMouseHG mice can be used as a good complementary tool in discovery of fully human therapeutic and diagnostic antibodies.</p

    Image_1_Discovery and characterization of SARS-CoV-2 reactive and neutralizing antibodies from humanized CAMouseHG mice through rapid hybridoma screening and high-throughput single-cell V(D)J sequencing.tif

    No full text
    The coronavirus disease 2019 pandemic has caused more than 532 million infections and 6.3 million deaths to date. The reactive and neutralizing fully human antibodies of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) are effective detection tools and therapeutic measures. During SARS-CoV-2 infection, a large number of SARS-CoV-2 reactive and neutralizing antibodies will be produced. Most SARS-CoV-2 reactive and neutralizing fully human antibodies are isolated from human and frequently encoded by convergent heavy-chain variable genes. However, SARS-CoV-2 viruses can mutate rapidly during replication and the resistant variants of neutralizing antibodies easily survive and evade the immune response, especially in the face of such focused antibody responses in humans. Therefore, additional tools are needed to develop different kinds of fully human antibodies to compensate for current deficiency. In this study, we utilized antibody humanized CAMouseHG mice to develop a rapid antibody discovery method and examine the antibody repertoire of SARS-CoV-2 RBD-reactive hybridoma cells derived from CAMouseHG mice by using high-throughput single-cell V(D)J sequencing analysis. CAMouseHG mice were immunized by 28-day rapid immunization method. After electrofusion and semi-solid medium screening on day 12 post-electrofusion, 171 hybridoma clones were generated based on the results of SARS-CoV-2 RBD binding activity assay. A rather obvious preferential usage of IGHV6-1 family was found in these hybridoma clones derived from CAMouseHG mice, which was significantly different from the antibodies found in patients with COVID-19. After further virus neutralization screening and antibody competition assays, we generated a noncompeting two-antibody cocktail, which showed a potent prophylactic protective efficacy against SARS-CoV-2 in cynomolgus macaques. These results indicate that humanized CAMouseHG mice not only provide a valuable platform to obtain fully human reactive and neutralizing antibodies but also have a different antibody repertoire from humans. Thus, humanized CAMouseHG mice can be used as a good complementary tool in discovery of fully human therapeutic and diagnostic antibodies.</p

    Table_2_Discovery and characterization of SARS-CoV-2 reactive and neutralizing antibodies from humanized CAMouseHG mice through rapid hybridoma screening and high-throughput single-cell V(D)J sequencing.xlsx

    No full text
    The coronavirus disease 2019 pandemic has caused more than 532 million infections and 6.3 million deaths to date. The reactive and neutralizing fully human antibodies of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) are effective detection tools and therapeutic measures. During SARS-CoV-2 infection, a large number of SARS-CoV-2 reactive and neutralizing antibodies will be produced. Most SARS-CoV-2 reactive and neutralizing fully human antibodies are isolated from human and frequently encoded by convergent heavy-chain variable genes. However, SARS-CoV-2 viruses can mutate rapidly during replication and the resistant variants of neutralizing antibodies easily survive and evade the immune response, especially in the face of such focused antibody responses in humans. Therefore, additional tools are needed to develop different kinds of fully human antibodies to compensate for current deficiency. In this study, we utilized antibody humanized CAMouseHG mice to develop a rapid antibody discovery method and examine the antibody repertoire of SARS-CoV-2 RBD-reactive hybridoma cells derived from CAMouseHG mice by using high-throughput single-cell V(D)J sequencing analysis. CAMouseHG mice were immunized by 28-day rapid immunization method. After electrofusion and semi-solid medium screening on day 12 post-electrofusion, 171 hybridoma clones were generated based on the results of SARS-CoV-2 RBD binding activity assay. A rather obvious preferential usage of IGHV6-1 family was found in these hybridoma clones derived from CAMouseHG mice, which was significantly different from the antibodies found in patients with COVID-19. After further virus neutralization screening and antibody competition assays, we generated a noncompeting two-antibody cocktail, which showed a potent prophylactic protective efficacy against SARS-CoV-2 in cynomolgus macaques. These results indicate that humanized CAMouseHG mice not only provide a valuable platform to obtain fully human reactive and neutralizing antibodies but also have a different antibody repertoire from humans. Thus, humanized CAMouseHG mice can be used as a good complementary tool in discovery of fully human therapeutic and diagnostic antibodies.</p
    corecore