39 research outputs found

    A New Spatial Interpolation Method Based On Cross-Sections Sampling

    Full text link
    The spatial interpolation results of the channel topography by the different methods have a very important effect on the topographic distribution of river channel. The study shows that the conventional interpolation methods such as TIN, Kriging and IDW methods can give good results with reasonable parameters when the sampling data is dense enough. However, the spatial distribution of source data sampled by the classical cross-section method in hydrological measurement may have large and small spaces along the longitudinal and transverse directions of river channel respectively, and then these interpolation methods above may give the unreasonable interpolation results. In this case, a new interpolation method named Linear Interpolation on the Fitted Curvilinear Grid of the river channel (LIFCG) is proposed, in which the river regime is considered by a set of curvilinear grids. The topography along the rows of grid dots which have same position with cross sections where the topography data is measured is firstly checked out and calculated by using linear interpolation method, then the topography at other grid nodes are interpolated along the longitudinal lines by using linear interpolation method. The application shows that the new method can give the more reasonable results than TIN, IDW and Kriging methods. In further, based on the new method, the river thalweg is firstly calculated and used to regenerate the channel fitted non-orthogonal curvilinear grid and then applied the grid to interpolate when there are complicated distribution and large spatial variation of channel topography and plane shape. The applications in the curved and braided natural channel’s interpolation show the interpolation by the new method with coupling of the river thalweg is more reasonable at some degree than the method without coupling of the river thalweg and other classical method when sparse cross-section measured sampling data is used

    Continuous photon energy modulation in IMRT of pancreatic cancer

    Get PDF
    Purpose: To develop a novel IMRT optimization method based on the principle of photon energy synthesis that simultaneously optimizes fluence map and beamlet energy. The method was validated on pancreatic cancers to demonstrate the benefits of the additional degree of freedom of photon energy in IMRT.Methods: Previous work has demonstrated that the effect of a photon beam of known energy can be achieved by the combination of two existing energy photons in the proper ratio. It further implied that any energy photon can be synthesized. Based on this, we propose the concept of continuous beamlet energy modulation in IMRT, or IMRT-BEM. The IMRT-BEM was modeled as the simultaneous optimization of two fluence maps, one for the low energy beam and one for the high energy beam, and it was implemented in an in-house inverse planning system. The IMRT-BEM was applied on 10 pancreatic cancer cases, where the IMRT-BEM plan was compared with single-energy IMRT plans of 6 MV (IMRT-6MV) and 15 MV photons (IMRT-15MV).Results: The IMRT-BEM plan provides a noticeable reduction to the volume irradiated at the high dose level (PTV105%) for PTV, at least 24.7% (6.4 ± 6.8 vs. 31.1 ± 18.7 (p = 0.005) and 43.8 ± 19.8 (p = 0.005) for IMRT-BEM, IMRT-6MV, and IMRT-15MV respectively). For target dose coverage, there were statistically significant improvements between the IMRT-BEM plans and the other two plans in terms of CI and HI. Compared to the IMRT-6MV plan, there were significant reductions in the Dmean of the spinal cord, liver, bowel, duodenum, and stomach. The irradiation volumes of the medium dose (V20Gy, and V40Gy) for the duodenum and bowel were reduced significantly. There were no significant differences between the IMRT-BEM and IMRT-15MV plans except for the Dmean of the spinal cord and the duodenum, the V20Gy, and V40Gy for the duodenum, and the V20Gy of the stomach.Conclusion: IMRT-BEM has certain dosimetric advantages for PTV and improves OAR sparing in pancreatic cancer, and can be effectively used in radiation treatment planning, providing another degree of freedom for planners to improve treatment plan quality

    The Effects of Litter Layer and Topsoil on Surface Runoff during Simulated Rainfall in Guizhou Province, China: A Plot Scale Case Study

    No full text
    Litter layers and topsoil have important effects on surface runoff. To investigate these effects at the plot scale, artificial rainfall experiments were conducted on micro-runoff plots in Guizhou Province, China. Three types of plots were selected, the thin litter layer with low soil bulk density type (T-L type), the thick litter layer with high soil bulk density type (T-H type), and the moderate litter depth and soil bulk density type (M type), and three artificial rainfall intensities (30 mm/h, 70 mm/h, 120 mm/h) were used. The runoff volume was largest in the T-H type plot at different rainfall intensities and durations. Runoff in the M type plot had characteristics of both the T-L and T-H type plots. The runoff yielding speed was significantly higher and the runoff yielding time was significantly lower in the T-H type plot. In general, the runoff coefficient was the smallest in the T-L type plot and largest in the T-H type plot. The variations in the runoff coefficient were 15.6%, 19.3%, and 5.8% for the T-L, T-H, and M type plots respectively. The results of this study can improve the understanding of surface runoff processes at the plot scale under different litter and surface soil conditions

    Temporal Variation of Soil Moisture and Its Influencing Factors in Karst Areas of Southwest China from 1982 to 2015

    No full text
    Climate change and human activities are two dominating factors affecting soil moisture temporal variation trends, whereas their individual contributions to soil moisture trends still remain uncertain in the karst areas of Southwest China. Based on the linear regression trend analysis, Mann–Kendall mutation detection, and residual analysis methods, we quantified the contributions of climate change and human activities to soil moisture temporal variation trends in the karst areas of Southwest China. The results showed that the soil moisture in the study area experienced a drying trend from 1982 to 2015. The mutated year was 1999, and the soil moisture decreasing trend was more evident from 2000 to 2015 than from 1982 to 1999. Human activities and climate change accounted for 59% and 41%, respectively, of soil moisture drying trends. Owing to the spatial heterogeneity of geomorphic features, the individual contributions of climate change and human activities to soil moisture trends exhibited regional differences. Although remarkable regional vegetation restoration was found since applying the Grain for Green Project, the negative impact of vegetation restoration on soil moisture cannot be neglected. This study is a quantitative analysis of the relative impacts of climate change and human activities on soil moisture trends, and our findings provide a theoretical reference for the sustainable use of soil water resources in the karst areas of Southwest China

    Effects of Vegetation Restoration on Regional Soil Moisture Content in the Humid Karst Areas—A Case Study of Southwest China

    No full text
    Soil moisture is one of the restricting factors in the humid karst areas, which feature strong spatial heterogeneity. However, current research about the effects of vegetation restoration on soil moisture content have mainly focused on plot scale and slope scale, while these effects still remain unclear at regional scale in this area. Taking Southwest China as a case study and based on the land parameter data record (LPDR) and enhanced vegetation index (EVI) data set during 2002–2018, this study analyzed the spatiotemporal variation characteristics of vegetation and soil moisture content, and evaluated the effects of vegetation restoration on regional soil moisture content dynamics in paired years with similar precipitation conditions. The results showed that the EVI generally increased at a rate of 0.035/10a during 2002–2018, while the soil moisture was dominated by a drying trend at a variation rate of −0.0006 (cm3/cm3)/10a. The increasing trend of EVI accounted for 90.90% across the study area, whereas the decreasing trend of soil moisture accounted for 51.66%, and the increasing trend of soil moisture accounted for 48.34%. In addition, the decreasing trend of soil moisture coupled with an increasing trend of EVI distributed in most of the study area, especially in the homogenous limestone area. Our results demonstrate that there were remarkable vegetation restoration efforts in a series of ecological restoration projects, which resulted in a drying trend of the regional soil moisture content in the humid karst areas. The results suggest that it is necessary to consider reasonable vegetation planting density and suitable revegetation types to balance the relationship between vegetation water consumption and soil moisture supplementation in vegetation restoration practice in the humid karst areas

    Effects of Vegetation Restoration on Regional Soil Moisture Content in the Humid Karst Areas—A Case Study of Southwest China

    No full text
    Soil moisture is one of the restricting factors in the humid karst areas, which feature strong spatial heterogeneity. However, current research about the effects of vegetation restoration on soil moisture content have mainly focused on plot scale and slope scale, while these effects still remain unclear at regional scale in this area. Taking Southwest China as a case study and based on the land parameter data record (LPDR) and enhanced vegetation index (EVI) data set during 2002–2018, this study analyzed the spatiotemporal variation characteristics of vegetation and soil moisture content, and evaluated the effects of vegetation restoration on regional soil moisture content dynamics in paired years with similar precipitation conditions. The results showed that the EVI generally increased at a rate of 0.035/10a during 2002–2018, while the soil moisture was dominated by a drying trend at a variation rate of −0.0006 (cm3/cm3)/10a. The increasing trend of EVI accounted for 90.90% across the study area, whereas the decreasing trend of soil moisture accounted for 51.66%, and the increasing trend of soil moisture accounted for 48.34%. In addition, the decreasing trend of soil moisture coupled with an increasing trend of EVI distributed in most of the study area, especially in the homogenous limestone area. Our results demonstrate that there were remarkable vegetation restoration efforts in a series of ecological restoration projects, which resulted in a drying trend of the regional soil moisture content in the humid karst areas. The results suggest that it is necessary to consider reasonable vegetation planting density and suitable revegetation types to balance the relationship between vegetation water consumption and soil moisture supplementation in vegetation restoration practice in the humid karst areas

    Insight into runoff characteristics using hydrological modeling in the data-scarce southern Tibetan Plateau: Past, present, and future.

    No full text
    Regional hydrological modeling in ungauged regions has attracted growing attention in water resources research. The southern Tibetan Plateau often suffers from data scarcity in watershed hydrological simulation and water resources assessment. This hinders further research characterizing the water cycle and solving international water resource issues in the area. In this study, a multi-spatial data based Distributed Time-Variant Gain Model (MS-DTVGM) is applied to the Yarlung Zangbo River basin, an important international river basin in the southern Tibetan Plateau with limited meteorological data. This model is driven purely by spatial data from multiple sources and is independent of traditional meteorological data. Based on the methods presented in this study, daily snow cover and potential evapotranspiration data in the Yarlung Zangbo River basin in 2050 are obtained. Future (2050) climatic data (precipitation and air temperature) from the Fifth Assessment Report of the Intergovernmental Panel on Climate Change (IPCC-AR5) are used to study the hydrological response to climate change. The result shows that river runoff will increase due to precipitation and air temperature changes by 2050. Few differences are found between daily runoff simulations from different Representative Concentration Pathway (RCP) scenarios (RCP2.6, RCP4.5 and RCP8.5) for 2050. Historical station observations (1960-2000) at Nuxia and model simulations for two periods (2006-2009 and 2050) are combined to study inter-annual and intra-annual runoff distribution and variability. The inter-annual runoff variation is stable and the coefficient of variation (CV) varies from 0.21 to 0.27. In contrast, the intra-annual runoff varies significantly with runoff in summer and autumn accounting for more than 80% of the total amount. Compared to the historical period (1960-2000), the present period (2006-2009) has a slightly uneven intra-annual runoff temporal distribution, and becomes more balanced in the future (2050)

    Comparing the Water-holding Characteristics of Broadleaved, Coniferous, and Mixed Forest Litter Layers in a Karst Region

    No full text
    Karst forests are often located in mountainous regions, and because of various geological factors both soil and water loss are major conservation concerns. We investigated the water-holding characteristics of 3 typical karst forest types through field sampling and laboratory experiments. The results showed that (1) the total litter mass of the coniferous forest was significantly higher than that of either the mixed forest or the broadleaved forest; (2) the mass of semidecomposed litter was significantly higher than that of undecomposed litter; (3) the litter layers of the mixed and coniferous forests had similar maximum water-holding capacity, whereas the maximum water-holding capacity of the broadleaved forest was significantly lower; (4) the maximum water-retention capacity of both the mixed and coniferous forests was significantly higher than that of the broadleaved forest; and (5) water-absorption rate and maximum water-holding capacity varied significantly across forest and litter types, with the mixed forest and undecomposed litter layers tending both to hold more water and to absorb water more quickly than the other forest types or the semidecomposed litter layer. Because of the elevated water-holding capacity and absorption rate of the mixed forest in karst regions, special emphasis on the conservation of this complex forest ecosystem is critical from both hydrological and ecological perspectives

    Threshold Effects between Ecosystem Services and Natural and Social Drivers in Karst Landscapes

    No full text
    It has been shown that there are thresholds of influence on the response of ecosystem services to their drivers, and the range of drivers that provide high levels of ecosystem services can be delineated through thresholds. However, due to the spatial heterogeneity of landscapes in karst regions, the results of ecosystem service threshold studies in non-karst regions may not be applicable to karst regions. This study explores the threshold effects between ecosystem services in karst landscapes and their natural and social drivers. It is shown that there are nonlinear constraints between them, and different critical thresholds exist for different kinds of ecosystem services. The main thresholds for water supply services include the slope (43.64°) and relief amplitude (331.60 m); for water purification services, they include relief amplitude (147.05 m) and distance to urban land (DTUL) (32.30 km); for soil conservation services, they include the normalized difference vegetation index (NDVI) (0.80) and nighttime light intensity (43.58 nW∙cm−2∙sr−1); the main thresholds for biodiversity maintenance services include population density (1481.06 person∙km−2) and distance to urban land (DTUL) (32.80 km). This enables regional ecological conservation planning based on different threshold ranges corresponding to different ecosystem services to meet the different needs of different decision makers
    corecore