65 research outputs found

    Failure of enhanced recovery after surgery in liver surgery: a systematic review and meta analysis

    Get PDF
    PurposeThis study aimed to conduct a systematic review of the literature to identify and summarize the existing evidence regarding ERAS failure and related risk factors after hepatic surgery. The objective was to provide physicians with a better understanding of these factors so that they can take appropriate action to minimize ERAS failure and improve patient outcomes.MethodA literature search of the PubMed MEDLINE, OVID, EMBASE, Cochrane Library, and Web of Science was performed. The search strategy involved terms related to ERAS, failure, and hepatectomy.ResultA meta-analysis was conducted on four studies encompassing a total of 1,535 patients, resulting in the identification of 20 risk factors associated with ERAS failure after hepatic surgery. Four of these risk factors were selected for pooling, including major resection, ASA classification of ≥3, advanced age, and male gender. Major resection and ASA ≥ 3 were identified as statistically significant factors of ERAS failure.ConclusionThe comprehensive literature review results indicated that the frequently identified risk factors for ERAS failure after hepatic surgery are linked to operative and anesthesia factors, including substantial resection and an American Society of Anesthesiologists score of 3 or higher. These insights will assist healthcare practitioners in taking prompt remedial measures. Nevertheless, there is a requirement for future high-quality randomized controlled trials with standardized evaluation frameworks for ERAS programs

    A Novel Method for Hyperspectral Mineral Mapping Based on Clustering-Matching and Nonnegative Matrix Factorization

    No full text
    The emergence of hyperspectral imagery paved a new way for rapid mineral mapping. As a classical hyperspectral classification method, spectral matching (SM) can automatically map the spatial distribution of minerals without the need for selecting training samples. However, due to the influence of noise, the mapping accuracy of SM is usually poor, and its per-pixel matching method is inefficient to some extent. To solve these problems, we propose an unsupervised clustering-matching mapping method, using a combination of k-means and SM (KSM). First, nonnegative matrix factorization (NMF) is used and combined with a simple and effective NMF initialization method (SMNMF) for feature extraction. Then, k-means is implemented to get the cluster centers of the extracted features and band depth, which are used for clustering and matching, respectively. Finally, dimensionless matching methods, including spectral angle mapper (SAM), spectral correlation angle (SCA), spectral gradient angle (SGA), and a combined matching method (SCGA) are used to match the cluster centers of band depth with a spectral library to obtain the mineral mapping results. A case study on the airborne hyperspectral image of Cuprite, Nevada, USA, demonstrated that the average overall accuracies of KSM based on SAM, SCA, SGA, and SCGA are approximately 22%, 22%, 35%, and 33% higher than those of SM, respectively, and KSM can save more than 95% of the mapping time. Moreover, the mapping accuracy and efficiency of SMNMF are about 15% and 38% higher than those of the widely used NMF initialization method. In addition, the proposed SCGA could achieve promising mapping results at both high and low signal-to-noise ratios compared with other matching methods. The mapping method proposed in this study provides a new solution for the rapid and autonomous identification of minerals and other fine objects

    Spectral clustering eigenvector selection of hyperspectral image based on the coincidence degree of data distribution

    No full text
    Spectral clustering is a well-regarded subspace clustering algorithm that exhibits outstanding performance in hyperspectral image classification through eigenvalue decomposition of the Laplacian matrix. However, its classification accuracy is severely limited by the selected eigenvectors, and the commonly used eigenvectors not only fail to guarantee the inclusion of detailed discriminative information, but also have high computational complexity. To address these challenges, we proposed an intuitive eigenvector selection method based on the coincidence degree of data distribution (CDES). First, the clustering result of improved k-means, which can well reflect the spatial distribution of various types was used as the reference map. Then, the adjusted Rand index and adjusted mutual information were calculated to assess the data distribution consistency between each eigenvector and the reference map. Finally, the eigenvectors with high coincidence degrees were selected for clustering. A case study on hyperspectral mineral mapping demonstrated that the mapping accuracies of CDES are approximately 56.3%, 15.5%, and 10.5% higher than those of the commonly used top, high entropy, and high relevance eigenvectors, and CDES can save more than 99% of the eigenvector selection time. Especially, due to the unsupervised nature of k-means, CDES provides a novel solution for autonomous feature selection of hyperspectral images

    The Regulatory Roles of Polysaccharides and Ferroptosis-Related Phytochemicals in Liver Diseases

    No full text
    Liver disease is a global health burden with high morbidity and mortality worldwide. Liver injuries can develop into severe end-stage diseases, such as cirrhosis or hepatocellular carcinoma, without valid treatment. Therefore, identifying novel drugs may promote liver disease treatment. Phytochemicals, including polysaccharides, flavonoids, alkaloids, and terpenes, are abundant in foods and medicinal plants and have various bioactivities, such as antioxidation, immunoregulation, and tumor killing. Recent studies have shown that many natural polysaccharides play protective roles in liver disease models in vitro and in vivo, such as fatty liver disease, alcoholic liver disease, drug-induced liver injury, and liver cancer. The mechanisms of liver disease are complex. Notably, ferroptosis, a new type of cell death driven by iron and lipid peroxidation, is considered to be the key mechanism in many hepatic pathologies. Therefore, polysaccharides and other types of phytochemicals with activities in ferroptosis regulation provide novel therapeutic strategies for ferroptosis-related liver diseases. This review summarizes our current understanding of the mechanisms of ferroptosis and liver injury and compelling preclinical evidence of natural bioactive polysaccharides and phytochemicals in treating liver disease

    Evaluating the Scale Effect of Soil Erosion Using Landscape Pattern Metrics and Information Entropy: A Case Study in the Danjiangkou Reservoir Area, China

    No full text
    The regular patterns of soil erosion tend to change at different scales of observation, affecting the mechanism of soil erosion and its evolution characteristics. This phenomenon has essential scientific significance for the rational allocation of land resources and for studies on sustainable ecosystems. As an important agricultural area in China, Danjiangkou reservoir is threatened by severe soil erosion. In this study, we selected four kinds of landscape pattern metrics, including patch density, fractal dimension, Shannon diversity index, and connectivity, to analyze soil erosion intensity in the Danjiangkou reservoir area at different scales based on landscape ecological principles. In addition, we determine the optimum research scale of the experimental area by calculating the information entropy value of soil patches at different scales. The findings suggest that: (1) the landscape pattern of soil erosion in the experimental area is obviously scale-dependent, and the responses to scale differ from index to index; (2) as the scale of observation increases, the fragmentation of soil patches is weakened, the stability of different landscape components is enhanced, and the soil becomes less vulnerable to erosion; and (3) based on information entropy theory, 60 m is confirmed to be the optimum scale of this study

    A perception-aware decomposition and fusion framework for underwater image enhancement

    No full text
    This paper presents a perception-aware decomposition and fusion framework for underwater image enhancement (UIE). Specifically, a general structural patch decomposition and fusion (SPDF) approach is introduced. SPDF is built upon the fusion of two complementary pre-processed inputs in a perception-aware and conceptually independent image space. First, a raw underwater image is pre-processed to produce two complementary versions including a contrast-corrected image and a detail-sharpened image. Then, each of them is decomposed into three conceptually independent components, i.e., mean intensity, contrast, and structure, via structural patch decomposition (SPD). Afterwards, the corresponding components are fused using tailored strategies. The three components after fusion are finally integrated via inverting the decomposition to reconstruct a final enhanced underwater image. The main advantage of SPDF is that two complementary pre-processed images are fused in a perception-aware and conceptually independent image space and the fusions of different components can be performed separately without any interactions and information loss. Comprehensive comparisons on two benchmark datasets demonstrate that SPDF outperforms several state-of-the-art UIE algorithms qualitatively and quantitatively. Moreover, the effectiveness of SPDF is also verified on another two relevant tasks, i.e., low-light image enhancement and single image dehazing. The code will be made available soon

    Increasing inhomogeneity of the global ocean

    No full text
    Author Posting. © American Geophysical Union, 2022. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Geophysical Research Letters 49(12), (2022): e2021GL097598, https://doi.org/10.1029/2021GL097598.The ocean is inhomogeneous in hydrographic properties with diverse water masses. Yet, how this inhomogeneity has evolved in a rapidly changing climate has not been investigated. Using multiple observational and reanalysis datasets, we show that the spatial standard deviation (SSD) of the global ocean has increased by 1.4 ± 0.1% in temperature and 1.5 ± 0.1% in salinity since 1960. A newly defined thermohaline inhomogeneity index, a holistic measure of both temperature and salinity changes, has increased by 2.4 ± 0.1%. Climate model simulations suggest that the observed ocean inhomogeneity increase is dominated by anthropogenic forcing and projected to accelerate by 200%–300% during 2015–2100. Geographically, the rapid upper-ocean warming at mid-to-low latitudes dominates the temperature inhomogeneity increase, while the increasing salinity inhomogeneity is mainly due to the amplified salinity contrast between the subtropical and subpolar latitudes.This work is supported by the Strategic Priority Research Program of Chinese Academy of Sciences (grant XDB42000000 and XDB40000000), the National Key R&D Program of China (2017YFA0603200), and the Shandong Provincial Natural Science Foundation (ZR2020JQ17), and the U.S. National Science Foundation Physical Oceanography Program (OCE- 2048336).2022-12-2

    Design, synthesis and anticancer evaluation of polymethoxy aurones as potential cell cycle inhibitors

    No full text
    Background: Cancer is the most fatal disease in humans and the aberrant activity of various cell cycle proteins results in uncontrolled tumor cell proliferation, thus, regulating the cell cycle is an attractive target in cancer therapy. Objectives: Aurone is a naturally occurring active compound with a wide range of biological activities, of which 3, 4, 5-trimethoxyphenyl (TMP) is an important microtubule targeting pharmacophore. Based on the pharmacophore combination principle, we incorporate the TMP pharmacophore into the aurone structure and design a novel polymethoxy derivative that is expected to inhibit tumor cell proliferation through regulating the cell cycle. Methods: By introducing different substituents on C-4′ and C-3′, a series of new 4, 5, 6-trimethoxy aurone derivatives have been designed and synthesized. DU145, MCF-7 and H1299 cell lines were selected to evaluate their anticancer activity. The compound with the best cytotoxicity was then selected and the anticancer mechanisms were investigated by network pharmacology, flow cytometry, Western blot, and cell heat transfer assay. ADMET prediction evaluated the draggability of aurone derivatives. Results: Aurones 1b and 1c have selective anti-proliferative activity against DU145 cells. Among them, the compound 1c have better cytotoxicity against DU145. Compound 1c could bind the active cavity of CyclinB1/CDK1/CKS complex protein and induced G2/M phase arrest of DU145 cells by regulating the expression of CyclinB1 and p21. Compound 1c satisfies the Lipinski rule, is suitable for the absorption and metabolism index, and has a lower risk of cardiac toxicity. Conclusions: Polymethoxy aurones 1c might function as a CyclinB1/CDK1 inhibitor that deserved to be further developed for the treatment of prostate cancer

    Characterization and Comparative Profiling of MicroRNAs in a Sexual Dimorphism Insect, <i>Eupolyphaga sinensis</i> Walker

    Get PDF
    <div><p>Background</p><p>MicroRNAs are now recognized as key post-transcriptional regulators in animal ontogenesis and phenotypic diversity. <i>Eupolyphaga sinensis</i> Walker (Blattaria) is a sexually dimorphic insect, which is also an important source of material used in traditional Chinese medicine. The male <i>E. sinensis</i> have shorter lifecycles and go through fewer instars than the female. Furthermore, the males have forewings, while the females are totally wingless.</p><p>Results</p><p>We used the Illumina/Solexa deep sequencing technology to sequence small RNA libraries prepared from the fourth-instar larvae of male and female <i>E. sinensis</i>. 19,097,799 raw reads were yielded in total: 7,817,445 reads from the female library and 11,280,354 from the male, respectively. As a result, we identified 168 known miRNAs belonging to 55 families as well as 204 novel miRNAs. Moreover, 45 miRNAs showed significantly different expression between the female and the male fourth-instar larvae, and we validated 10 of them by Stem-loop qRT-PCR. Some of these differentially expressed miRNAs are related to metamorphosis, development and phenotypic diversity.</p><p>Conclusions/Significance</p><p>This is the first comprehensive description of miRNAs in <i>E. sinensis</i>. The results provide a useful resource for further in-depth study on molecular regulation and evolution of miRNAs. These findings not only enrich miRNAs for hemimetabolans but also lay the foundation for the study of post-transcriptional regulation on the phenomena of sexual dimorphism.</p></div
    • …
    corecore