11 research outputs found

    Molybdenum Chloride Nanostructures with Giant Lattice Distortions Intercalated into Bilayer Graphene

    No full text
    The nanospace of the van der Waals (vdW) gap between structural units of two-dimensional (2D) materials serves as a platform for growing unusual 2D systems through intercalation and studying their properties. Various kinds of metal chlorides have previously been intercalated for tuning the properties of host layered materials, but the atomic structure of the intercalants remains still unidentified. In this study, we investigate the atomic structural transformation of molybdenum(V) chloride (MoCl5) after intercalation into bilayer graphene (BLG). Using scanning transmission electron microscopy, we found that the intercalated material represents MoCl3 networks, MoCl2 chains, and Mo5Cl10 rings. Giant lattice distortions and frequent structural transitions occur in the 2D MoClx that have never been observed in metal chloride systems. The trend of symmetric to nonsymmetric structural transformations can cause additional charge transfer from BLG to the intercalated MoClx, as suggested by our density functional theory calculations. Our study deepens the understanding of the behavior of matter in the confined space of the vdW gap in BLG and provides hints at a more efficient tuning of material properties by intercalation for potential applications, including transparent conductive films, optoelectronics, and energy storage

    Molybdenum Chloride Nanostructures with Giant Lattice Distortions Intercalated into Bilayer Graphene

    No full text
    The nanospace of the van der Waals (vdW) gap between structural units of two-dimensional (2D) materials serves as a platform for growing unusual 2D systems through intercalation and studying their properties. Various kinds of metal chlorides have previously been intercalated for tuning the properties of host layered materials, but the atomic structure of the intercalants remains still unidentified. In this study, we investigate the atomic structural transformation of molybdenum(V) chloride (MoCl5) after intercalation into bilayer graphene (BLG). Using scanning transmission electron microscopy, we found that the intercalated material represents MoCl3 networks, MoCl2 chains, and Mo5Cl10 rings. Giant lattice distortions and frequent structural transitions occur in the 2D MoClx that have never been observed in metal chloride systems. The trend of symmetric to nonsymmetric structural transformations can cause additional charge transfer from BLG to the intercalated MoClx, as suggested by our density functional theory calculations. Our study deepens the understanding of the behavior of matter in the confined space of the vdW gap in BLG and provides hints at a more efficient tuning of material properties by intercalation for potential applications, including transparent conductive films, optoelectronics, and energy storage

    Molybdenum Chloride Nanostructures with Giant Lattice Distortions Intercalated into Bilayer Graphene

    No full text
    The nanospace of the van der Waals (vdW) gap between structural units of two-dimensional (2D) materials serves as a platform for growing unusual 2D systems through intercalation and studying their properties. Various kinds of metal chlorides have previously been intercalated for tuning the properties of host layered materials, but the atomic structure of the intercalants remains still unidentified. In this study, we investigate the atomic structural transformation of molybdenum(V) chloride (MoCl5) after intercalation into bilayer graphene (BLG). Using scanning transmission electron microscopy, we found that the intercalated material represents MoCl3 networks, MoCl2 chains, and Mo5Cl10 rings. Giant lattice distortions and frequent structural transitions occur in the 2D MoClx that have never been observed in metal chloride systems. The trend of symmetric to nonsymmetric structural transformations can cause additional charge transfer from BLG to the intercalated MoClx, as suggested by our density functional theory calculations. Our study deepens the understanding of the behavior of matter in the confined space of the vdW gap in BLG and provides hints at a more efficient tuning of material properties by intercalation for potential applications, including transparent conductive films, optoelectronics, and energy storage

    Molybdenum Chloride Nanostructures with Giant Lattice Distortions Intercalated into Bilayer Graphene

    No full text
    The nanospace of the van der Waals (vdW) gap between structural units of two-dimensional (2D) materials serves as a platform for growing unusual 2D systems through intercalation and studying their properties. Various kinds of metal chlorides have previously been intercalated for tuning the properties of host layered materials, but the atomic structure of the intercalants remains still unidentified. In this study, we investigate the atomic structural transformation of molybdenum(V) chloride (MoCl5) after intercalation into bilayer graphene (BLG). Using scanning transmission electron microscopy, we found that the intercalated material represents MoCl3 networks, MoCl2 chains, and Mo5Cl10 rings. Giant lattice distortions and frequent structural transitions occur in the 2D MoClx that have never been observed in metal chloride systems. The trend of symmetric to nonsymmetric structural transformations can cause additional charge transfer from BLG to the intercalated MoClx, as suggested by our density functional theory calculations. Our study deepens the understanding of the behavior of matter in the confined space of the vdW gap in BLG and provides hints at a more efficient tuning of material properties by intercalation for potential applications, including transparent conductive films, optoelectronics, and energy storage

    In Situ Imaging the Oxygen Reduction Reactions of Solid State Na–O<sub>2</sub> Batteries with CuO Nanowires as the Air Cathode

    No full text
    We report real time imaging of the oxygen reduction reactions (ORRs) in all solid state sodium oxygen batteries (SOBs) with CuO nanowires (NWs) as the air cathode in an aberration-corrected environmental transmission electron microscope under an oxygen environment. The ORR occurred in a distinct two-step reaction, namely, a first conversion reaction followed by a second multiple ORR. In the former, CuO was first converted to Cu<sub>2</sub>O and then to Cu; in the latter, NaO<sub>2</sub> formed first, followed by its disproportionation to Na<sub>2</sub>O<sub>2</sub> and O<sub>2</sub>. Concurrent with the two distinct electrochemical reactions, the CuO NWs experienced multiple consecutive large volume expansions. It is evident that the freshly formed ultrafine-grained Cu in the conversion reaction catalyzed the latter one-electron-transfer ORR, leading to the formation of NaO<sub>2</sub>. Remarkably, no carbonate formation was detected in the oxygen cathode after cycling due to the absence of carbon source in the whole battery setup. These results provide fundamental understanding into the oxygen chemistry in the carbonless air cathode in all solid state Na–O<sub>2</sub> batteries

    In Situ Imaging the Oxygen Reduction Reactions of Solid State Na–O<sub>2</sub> Batteries with CuO Nanowires as the Air Cathode

    No full text
    We report real time imaging of the oxygen reduction reactions (ORRs) in all solid state sodium oxygen batteries (SOBs) with CuO nanowires (NWs) as the air cathode in an aberration-corrected environmental transmission electron microscope under an oxygen environment. The ORR occurred in a distinct two-step reaction, namely, a first conversion reaction followed by a second multiple ORR. In the former, CuO was first converted to Cu<sub>2</sub>O and then to Cu; in the latter, NaO<sub>2</sub> formed first, followed by its disproportionation to Na<sub>2</sub>O<sub>2</sub> and O<sub>2</sub>. Concurrent with the two distinct electrochemical reactions, the CuO NWs experienced multiple consecutive large volume expansions. It is evident that the freshly formed ultrafine-grained Cu in the conversion reaction catalyzed the latter one-electron-transfer ORR, leading to the formation of NaO<sub>2</sub>. Remarkably, no carbonate formation was detected in the oxygen cathode after cycling due to the absence of carbon source in the whole battery setup. These results provide fundamental understanding into the oxygen chemistry in the carbonless air cathode in all solid state Na–O<sub>2</sub> batteries

    In Situ Imaging the Oxygen Reduction Reactions of Solid State Na–O<sub>2</sub> Batteries with CuO Nanowires as the Air Cathode

    No full text
    We report real time imaging of the oxygen reduction reactions (ORRs) in all solid state sodium oxygen batteries (SOBs) with CuO nanowires (NWs) as the air cathode in an aberration-corrected environmental transmission electron microscope under an oxygen environment. The ORR occurred in a distinct two-step reaction, namely, a first conversion reaction followed by a second multiple ORR. In the former, CuO was first converted to Cu<sub>2</sub>O and then to Cu; in the latter, NaO<sub>2</sub> formed first, followed by its disproportionation to Na<sub>2</sub>O<sub>2</sub> and O<sub>2</sub>. Concurrent with the two distinct electrochemical reactions, the CuO NWs experienced multiple consecutive large volume expansions. It is evident that the freshly formed ultrafine-grained Cu in the conversion reaction catalyzed the latter one-electron-transfer ORR, leading to the formation of NaO<sub>2</sub>. Remarkably, no carbonate formation was detected in the oxygen cathode after cycling due to the absence of carbon source in the whole battery setup. These results provide fundamental understanding into the oxygen chemistry in the carbonless air cathode in all solid state Na–O<sub>2</sub> batteries

    In Situ Imaging the Oxygen Reduction Reactions of Solid State Na–O<sub>2</sub> Batteries with CuO Nanowires as the Air Cathode

    No full text
    We report real time imaging of the oxygen reduction reactions (ORRs) in all solid state sodium oxygen batteries (SOBs) with CuO nanowires (NWs) as the air cathode in an aberration-corrected environmental transmission electron microscope under an oxygen environment. The ORR occurred in a distinct two-step reaction, namely, a first conversion reaction followed by a second multiple ORR. In the former, CuO was first converted to Cu<sub>2</sub>O and then to Cu; in the latter, NaO<sub>2</sub> formed first, followed by its disproportionation to Na<sub>2</sub>O<sub>2</sub> and O<sub>2</sub>. Concurrent with the two distinct electrochemical reactions, the CuO NWs experienced multiple consecutive large volume expansions. It is evident that the freshly formed ultrafine-grained Cu in the conversion reaction catalyzed the latter one-electron-transfer ORR, leading to the formation of NaO<sub>2</sub>. Remarkably, no carbonate formation was detected in the oxygen cathode after cycling due to the absence of carbon source in the whole battery setup. These results provide fundamental understanding into the oxygen chemistry in the carbonless air cathode in all solid state Na–O<sub>2</sub> batteries

    In Situ Imaging the Oxygen Reduction Reactions of Solid State Na–O<sub>2</sub> Batteries with CuO Nanowires as the Air Cathode

    No full text
    We report real time imaging of the oxygen reduction reactions (ORRs) in all solid state sodium oxygen batteries (SOBs) with CuO nanowires (NWs) as the air cathode in an aberration-corrected environmental transmission electron microscope under an oxygen environment. The ORR occurred in a distinct two-step reaction, namely, a first conversion reaction followed by a second multiple ORR. In the former, CuO was first converted to Cu<sub>2</sub>O and then to Cu; in the latter, NaO<sub>2</sub> formed first, followed by its disproportionation to Na<sub>2</sub>O<sub>2</sub> and O<sub>2</sub>. Concurrent with the two distinct electrochemical reactions, the CuO NWs experienced multiple consecutive large volume expansions. It is evident that the freshly formed ultrafine-grained Cu in the conversion reaction catalyzed the latter one-electron-transfer ORR, leading to the formation of NaO<sub>2</sub>. Remarkably, no carbonate formation was detected in the oxygen cathode after cycling due to the absence of carbon source in the whole battery setup. These results provide fundamental understanding into the oxygen chemistry in the carbonless air cathode in all solid state Na–O<sub>2</sub> batteries

    In Situ Imaging the Oxygen Reduction Reactions of Solid State Na–O<sub>2</sub> Batteries with CuO Nanowires as the Air Cathode

    No full text
    We report real time imaging of the oxygen reduction reactions (ORRs) in all solid state sodium oxygen batteries (SOBs) with CuO nanowires (NWs) as the air cathode in an aberration-corrected environmental transmission electron microscope under an oxygen environment. The ORR occurred in a distinct two-step reaction, namely, a first conversion reaction followed by a second multiple ORR. In the former, CuO was first converted to Cu<sub>2</sub>O and then to Cu; in the latter, NaO<sub>2</sub> formed first, followed by its disproportionation to Na<sub>2</sub>O<sub>2</sub> and O<sub>2</sub>. Concurrent with the two distinct electrochemical reactions, the CuO NWs experienced multiple consecutive large volume expansions. It is evident that the freshly formed ultrafine-grained Cu in the conversion reaction catalyzed the latter one-electron-transfer ORR, leading to the formation of NaO<sub>2</sub>. Remarkably, no carbonate formation was detected in the oxygen cathode after cycling due to the absence of carbon source in the whole battery setup. These results provide fundamental understanding into the oxygen chemistry in the carbonless air cathode in all solid state Na–O<sub>2</sub> batteries
    corecore