29 research outputs found

    Do shared E-bikes reduce urban carbon emissions?

    Get PDF
    Under the threat of climate change, many global cities nowadays are promoting shared commuting modes to reduce greenhouse gas emissions. Shared electric bikes (e-bikes) are emerging modes that compete with bikes, cars, or public transit. However, there is a lack of empirical evidence for the net effect of shared e-bikes on carbon emissions, as shared e-bikes can substitute for both higher carbon emissions modes and cleaner commuting modes. Using a large collection of spatio-temporal trajectory data of shared e-bike trips in two provincial cities (Chengdu and Kunming) in China, this study develops a travel mode substitution model to identify the changes in travel modes due to the introduction of shared e-bike systems and to quantify the corresponding impact on net carbon emissions. We find that, on average, shared e-bikes decrease carbon emissions by 108–120 g per kilometre. More interestingly, the reduction effect is much stronger in underdeveloped non-central areas with lower density, less diversified land use, lower accessibility, and lower economic level. Although the actual carbon reduction benefits of shared e-bike schemes are far from clear, this study bears important policy implications for exploring this emerging micro-mobility mode to achieve carbon reduction impacts

    The travel pattern difference in dockless micro-mobility: shared e-bikes versus shared bikes

    Get PDF
    To facilitate the tailoring of dockless bike-sharing and electric bike (e-bike) sharing services and assist in formulating effective regulations, this study aims to unravel the spatio-temporal travel patterns specific to e-bike-sharing and bike-sharing systems, utilising interpretable machine learning methods and a large-scale trip-level dataset in Kunming, China. The results show that shared bikes and e-bikes exhibit overall similarities and subtle differences in many aspects, such as trip attributes and spatial distribution. Additionally, both shared bikes and shared e-bikes have three basic temporal patterns for commuting and recreational purposes. Regarding the differences, e-bike sharing networks are more dispersed and bigger, and bike sharing tends to form densely connected clusters of flow, exhibiting a local concentration of activity. Besides, the commuting activities within e-bike sharing systems exhibit two patterns: direct travel to the destination and integration with public transit. In contrast, shared bikes predominantly rely on public transit transfers for commuting purposes

    Exploring the Genetic Correlation Between Growth and Immunity Based on Summary Statistics of Genome-Wide Association Studies

    Get PDF
    The relationship between growth and immune phenotypes has been presented in the context of physiology and energy allocation theory, but has rarely been explained genetically in humans. As more summary statistics of genome-wide association studies (GWAS) become available, it is increasingly possible to explore the genetic relationship between traits at the level of genome-wide summary statistics. In this study, publicly available summary statistics of growth and immune related traits were used to evaluate the genetic correlation coefficients between immune and growth traits, as well as the cause and effect relationship between them. In addition, pleiotropic variants and KEGG pathways were identified. As a result, we found negative correlations between birthweight and immune cell count phenotypes, a positive correlation between childhood head circumference and eosinophil counts (EO), and positive or negative correlations between childhood body mass index and immune phenotypes. Statistically significant negative effects of immune cell count phenotypes on human height, and a slight but significant negative influence of human height on allergic disease were also observed. A total of 98 genomic regions were identified as containing variants potentially related to both immunity and growth. Some variants, such as rs3184504 located in SH2B3, rs13107325 in SLC39A8, and rs1260326 located in GCKR, which have been identified to be pleiotropic SNPs among other traits, were found to also be related to growth and immune traits in this study. Meanwhile, the most frequent overlapping KEGG pathways between growth and immune phenotypes were autoimmune related pathways. Pleiotropic pathways such as the adipocytokine signaling pathway and JAK-STAT signaling pathway were also identified to be significant. The results of this study indicate the complex genetic relationship between growth and immune phenotypes, and reveal the genetic background of their correlation in the context of pleiotropy

    Assessment of Autozygosity Derived From Runs of Homozygosity in Jinhua Pigs Disclosed by Sequencing Data

    Get PDF
    Jinhua pig, a well-known Chinese indigenous breed, has evolved as a pig breed with excellent meat quality, greater disease resistance, and higher prolificacy. The reduction in the number of Jinhua pigs over the past years has raised concerns about inbreeding. Runs of homozygosity (ROH) along the genome have been applied to quantify individual autozygosity to improve the understanding of inbreeding depression and identify genes associated with traits of interest. Here, we investigated the occurrence and distribution of ROH using next-generation sequencing data to characterize autozygosity in 202 Jinhua pigs, as well as to identify the genomic regions with high ROH frequencies within individuals. The average inbreeding coefficient, based on ROH longer than 1 Mb, was 0.168 ± 0.052. In total, 18,690 ROH were identified in all individuals, among which shorter segments (1–5 Mb) predominated. Individual ROH autosome coverage ranged from 5.32 to 29.14% in the Jinhua population. On average, approximately 16.8% of the whole genome was covered by ROH segments, with the lowest coverage on SSC11 and the highest coverage on SSC17. A total of 824 SNPs (about 0.5%) and 11 ROH island regions were identified (occurring in over 45% of the samples). Genes associated with reproduction (HOXA3, HOXA7, HOXA10, and HOXA11), meat quality (MYOD1, LPIN3, and CTNNBL1), appetite (NUCB2) and disease resistance traits (MUC4, MUC13, MUC20, LMLN, ITGB5, HEG1, SLC12A8, and MYLK) were identified in ROH islands. Moreover, several quantitative trait loci for ham weight and ham fat thickness were detected. Genes in ROH islands suggested, at least partially, a selection for economic traits and environmental adaptation, and should be subject of future investigation. These findings contribute to the understanding of the effects of environmental and artificial selection in shaping the distribution of functional variants in the pig genome

    Strategies for indica rice adapted to high-temperature stress in the middle and lower reaches of the Yangtze River

    Get PDF
    High temperatures caused by climate warming severely affect the grain yield and quality of rice. In this study, the rice cultivars Longliangyou Huazhan (LLYHZ) and Quanliangyou 2118 (QLY2118) were selected as the experimental materials for investigation of an optimal cultivation system under high-temperature treatment. In addition, the heat-resistant cultivar Huanghuazhan (HHZ) and heat-sensitive cultivar Huiliangyou 858 (HLY858) were chosen as the experimental materials to study the effects of exogenous plant growth regulators on heat stress responses under high-temperature treatment. The results showed that mechanical transplanting of carpet seedlings and delayed sowing effectively increased the leaf area index and reduced the canopy temperature of LLYHZ and QLY2118. Furthermore, carpet seedling mechanical transplantation and delayed sowing improved grain yield and quality. Spray application of five plant growth regulators revealed that brassinolide and salicylic acid had the strongest effects on significantly improving antioxidant enzyme activities in the panicle, which would reduce the damage caused by the accumulation of reactive oxygen species and enhance plant tolerance of high-temperature stress. In addition, brassinolide and salicylic acid enhanced the percentage of anther dehiscence and percentage seed set. In this study, a set of simplified eco-friendly cultivation techniques for single-season indica rice adaptation to high-temperature stress was established. These results will be of great importance in alleviating the effects of high-temperature stress on rice production

    Research on the sustainability of "greening" process in the Mu Us Sandy Land based on the spatiotemporal stability of ecological land.

    No full text
    In environmentally sensitive areas, especially the arid and semi-arid regions, the greening stability process and its influencing factors can directly affect the sustainable development of the ecological environment. In this study, multi-source remote sensing data such as land use/cover data, MODIS NDVI, and soil moisture, methods such as stability index, vegetation quantitative remote sensing, and Geodetector were employed to analyze the sustainability of the greening process in the Mu Us Sandy in 2000-2020, which were viewed from three aspects: changes in stability of land use types and function, soil moisture change and influencing factors on greening stability. The results showed that, (1) From the stability of land use types, continuous stable ecological land accounted for more than 50%, showing that decreased from northwest toward southeast. (2) From the functional stability, NDVI showed a fluctuated growth (0.035/a), with an increasing distribution pattern from northwest to southeast. Additionally, Vegetation changes were unstable and concentrated in the western part of the study area (OtogBanner and Otog Front Banner), while the eastern part was stable, in which vegetation improvement took the main position. Moreover, mobile dunes almost disappeared, and semi-fixed dunes decreased and gradually shrank to the west of the sandy area, while fixed dunes soared and were concentrated in the middle of the sandy land. (3) From the soil moisture change, soil moisture at different underground depths showed an overall increasing trend, but the deep soil moisture was higher than the shallow, and spatial distribution varied greatly. (4) From the influencing factors, natural factors significantly influence greening stability, among which precipitation had a particularly profound impact, and interactions with other natural and social factors were higher explanatory. The paper aims to explore whether the ecological environment is developing in a good and orderly direction in the Mu Us Sandy Land, and the potential factors that cause its changes, to provide a theoretical basis for scientific governance in the Mu Us Sandy Land and other arid and semi-arid areas in the future

    From “separation” to “Integration”: Analyzing the functional transformation of the urban greenbelt in Beijing from the perspective of “parkization”

    No full text
    The Urban greenbelt (UGB), vital for curbing urban expansion, experiences shifts in function across diverse development stages. Unfortunately, UGB functional transformation process, especially its social utilization of ecological functions, often receives insufficient attention, impacting urban ecosystem health enhancement and residents' well-being. The UGB park, combining ecology and social benefits, holds significance in studying varied UGB functions and their transformation. Thus, tracking park development trends (“parkization”) aids in analyzing UGB functional evolution. We employed high-precision land use/land cover (LULC) data (less than1m) from Beijing to explore UGB functional transformation law, focusing on UGB park dynamics and their ecological benefits (Park Ecological Land Use/Land Cover (PLULC) percentage (PPELULC), mean patch size (MPS), edge density (ED), area-weighted mean shape index (AWMSI), patch size standard deviation (PSSD)), and social benefits (per capita park area (PCP), per capita PLULC area (PCPELULC), accessible park service scope). Results revealed that as UGB park construction slowed, park ecological space displayed an “increasing and dispersing” trend, signifying weakened UGB park ecological benefits. Simultaneously, park social services collectively exhibited improvement, suggesting the UGB functional transformation from solely ecological protection to holistic environmental and social safeguarding. This transformation was more notable within the first greenbelt (UGB1), predominantly driven by comprehensive and natural amusement parks. The “parkization”-based UGB function evaluation method not only illuminated the functional transformation mechanism but also underscored the integrated needs of ecology and society, which is essential to the subsequent scientific formulation and implementation of ecological management strategies that meet the needs of urban environmental protectio

    A high spatial resolution dataset for methylmercury exposure in Guangdong-Hong Kong-Macao Greater Bay Area

    No full text
    Abstract Dietary methylmercury (MeHg) exposure increases the risk of many human diseases. The Guangdong-Hong Kong-Macao Greater Bay Area (GBA) is the world’s most populous bay area and people there might suffer a high risk of dietary MeHg exposure. However, there lacks a time-series high spatial resolution dataset for dietary MeHg exposure in the GBA. This study constructs a high spatial resolution (1 km × 1 km) dataset for dietary MeHg exposure in the GBA during 2009–2019. It first constructs the dietary MeHg exposure inventory for each county/district of the GBA, based on MeHg concentrations of foods (i.e., rice and fish in this study) and per capita rice and fish intake. Subsequently, this study spatializes the dietary MeHg exposure inventory at 1 km × 1 km scale, using gridded data for food consumption expenditure as the proxy. This dataset can describe the spatially explicit hotspots, distribution patterns, and variation trend of dietary MeHg exposure in the GBA. This dataset can support spatially explicit evaluation of MeHg-related health risks in the GBA

    Correlation Analysis between Urban Green Space and Land Surface Temperature from the Perspective of Spatial Heterogeneity: A Case Study within the Sixth Ring Road of Beijing

    No full text
    Urban greening has been widely regarded as the most effective, lasting, and economical strategy for alleviating the effects of urban heat islands (UHIs). Previous studies on the cooling effect of urban green spaces (UGSs) tend to analyze the correlation between landscape metrics and land-surface temperature (LST) based on a global parameter estimation, while ignoring urban heterogeneity and autocorrelation. This study focuses on the sixth ring road of Beijing and uses Landsat 8 imagery to retrieve the LST and extract the position of UGSs. We propose a new approach to optimize the selection of landscape metrics, to identify the least and most effective metrics to establish a geographically weighted regression (GWR) model, and to plot the distribution of local regression coefficients to investigate the spatially heterogeneous cooling effects of greenspaces. The effect of UGS landscape metrics on the LST differs according to spatial location; the method enhances our understanding of the effects of UGS spatial configuration on UHIs and better guides the planning and construction of future UGSs
    corecore