14 research outputs found

    Clinical Phenomapping and Outcomes after Heart Transplantation

    No full text
    BackgroundSurvival after heart transplantation (HTx) is limited by complications related to alloreactivity, immune suppression, and side effects of pharmacological therapies. We hypothesize that time-dependent phenomapping of clinical and molecular datasets is a valuable approach to clinical assessments and guiding medical management to improve outcomes.MethodsWe analyzed clinical, therapeutic, biomarker, and outcome data from 94 adult HTx patients and 1557 clinical encounters performed between January 2010 and April 2013. Multivariate analyses were employed to evaluate the association between immunosuppression therapy, biomarkers, and the combined clinical endpoint of death, allograft loss, retransplantation, and rejection. Data were analyzed by K-means clustering (k=2) to identify patterns of similar combined immunosuppression management, and percentile slopes were computed to examine the changes in dosages over time. Findings were correlated with clinical parameters, HLA antibody titers, peripheral blood mononuclear cell gene expression of the AlloMap test genes, and an intragraft, heart tissue gene co-expression network analysis was performed.ResultsUnsupervised cluster analysis of immunosuppressive therapies identified two groups, one characterized by a steeper immunosuppression minimization, associated with a higher likelihood for the combined endpoint, and the other by a less pronounced change. A time-dependent phenomap suggested that patients in the higher event rate group had increased HLA class I and II antibody titers, higher expression of the FLT3 AlloMap gene, and lower expression of the March8 and WDNR40A AlloMap genes. Intramyocardial biomarker-related co-expression network analysis of the FLT3 showed an immune system-related network underlying this biomarker.ConclusionTime-dependent precision phenotyping is a mechanistically insightful, data-driven approach to characterize patterns of clinical care and identify ways to improve clinical management and outcomes

    Discovery of non‐HLA antibodies associated with cardiac allograft rejection and development and validation of a non‐HLA antigen multiplex panel: From bench to bedside

    No full text
    We analyzed humoral immune responses to nonhuman leukocyte antigen (HLA) after cardiac transplantation to identify antibodies associated with allograft rejection. Protein microarray identified 366 non-HLA antibodies (>1.5 fold, P < .5) from a discovery cohort of HLA antibody-negative, endothelial cell crossmatch-positive sera obtained from 12 cardiac allograft recipients at the time of biopsy-proven rejection. From these, 19 plasma membrane proteins and 10 autoantigens identified from gene ontology analysis were combined with 48 proteins identified through literature search to generate a multiplex bead array. Longitudinal sera from a multicenter cohort of adult cardiac allograft recipients (samples: n = 477 no rejection; n = 69 rejection) identified 18 non-HLA antibodies associated with rejection (P < .1) including 4 newly identified non-HLA antigenic targets (DEXI, EMCN, LPHN1, and SSB). CART analysis showed 5/18 non-HLA antibodies distinguished rejection vs nonrejection. Antibodies to 4/18 non-HLA antigens synergize with HLA donor-specific antibodies and significantly increase the odds of rejection (P < .1). The non-HLA panel was validated using an independent adult cardiac transplant cohort (n = 21 no rejection; n = 42 rejection, >1R) with an area under the curve of 0.87 (P < .05) with 92.86% sensitivity and 66.67% specificity. We conclude that multiplex bead array assessment of non-HLA antibodies identifies cardiac transplant recipients at risk of rejection

    The importance of non-HLA antibodies in transplantation

    No full text
    The development of post-transplantation antibodies against non-HLA autoantigens is associated with rejection and decreased long-term graft survival. Although our knowledge of non-HLA antibodies is incomplete, compelling experimental and clinical findings demonstrate that antibodies directed against autoantigens such as angiotensin type 1 receptor, perlecan and collagen, contribute to the process of antibody-mediated acute and chronic rejection. The mechanisms that underlie the production of autoantibodies in the setting of organ transplantation is an important area of ongoing investigation. Ischaemia-reperfusion injury, surgical trauma and/or alloimmune responses can result in the release of organ-derived autoantigens (such as soluble antigens, extracellular vesicles or apoptotic bodies) that are presented to B cells in the context of the transplant recipient's antigen presenting cells and stimulate autoantibody production. Type 17 T helper cells orchestrate autoantibody production by supporting the proliferation and maturation of autoreactive B cells within ectopic tertiary lymphoid tissue. Conversely, autoantibody-mediated graft damage can trigger alloimmunity and the development of donor-specific HLA antibodies that can act in synergy to promote allograft rejection. Identification of the immunologic phenotypes of transplant recipients at risk of non-HLA antibody-mediated rejection, and the development of targeted therapies to treat such rejection, are sorely needed to improve both graft and patient survival
    corecore