3 research outputs found

    U–Pb dating of zircon and cassiterite from the Early Cretaceous Jiaojiguan iron-tin polymetallic deposit, implications for magmatism and metallogeny of the Tengchong area, western Yunnan, China

    No full text
    <p>The newly discovered Jiaojiguan deposit, a medium-scale skarn iron-tin polymetallic deposit on the Sino-Burma boundary of Yunnan Province (SW China), is spatially associated with the biotite monzonitic granite. Here, we report new <i>in situ</i> zircon LA-MC-ICP-MS U–Pb ages, trace element and Hf isotope data from the granite, and U–Pb dating ages of cassiterite from the ore bodies. In this study, we obtain a weighted mean <sup>206</sup>Pb/<sup>238</sup>U age of 124.1 ± 1.4 Ma for the zircon and a <sup>207</sup>Pb/<sup>206</sup>Pb-<sup>238</sup>U/<sup>206</sup>Pb intercept age of 123.8 ± 2.2 Ma for the cassiterite. The granite crystallized during the Early Cretaceous, with zircons exhibiting <i>ε</i>Hf(<i>t</i>) values from −5.8 to −0.6 and two-stage Hf model ages (T<sub>DM2</sub>) of 1.21–1.54 Ga. The close temporal and spatial links between pluton emplacement and ore-forming events suggest that magmatic-hydrothermal events were the key factors that triggered the genesis of the iron-tin polymetallic deposits in the area. Regional geochronological data show that tin mineralization took place three times during the Cretaceous–Palaeogene in the Tengchong block due to re-melting of the underlying supposed Proterozoic (1.5 ± 0.5 Ga) Sn-rich strata/materials. Compared with those in the Bangong–Nujiang metallogenic belt (BNMB), we propose that the Cretaceous iron-tin polymetallic mineralization events in Tengchong–Baoshan closely resemble those of the Bangong–Nujiang belt in northern Tibet, both of which have experienced similar tectono-magmatic-metallogenic histories since the Mesozoic.</p

    Permo–Triassic granitoids of the Xing’an–Mongolia segment of the Central Asian Orogenic Belt, Northeast China: age, composition, and tectonic implications

    No full text
    <p>The Xing’an–Mongolia orogenic belt is located in the southeastern segment of the Central Asian Orogenic Belt. Its tectonic evolution, especially during the Late Palaeozoic to Early Mesozoic, remains controversial. Here, we report new zircon U–Pb dates, whole-rock geochemistry, and Hf isotopes of representative samples from four plutons in the Linxi area of Northeast China to provide new constraints on this issue. Zircon U–Pb dating indicates that the intrusions were emplaced in two stages: (1) Late Permian to Early Triassic (the Banshifangzi and Xinangou plutons (252 ± 3)–(246.3 ± 3.3) Ma); and (2) Late Triassic (the Baoshan and Hada plutons (220.8 ± 2.7)–(211.4 ± 2.6) Ma). Their positive <i>ε</i>Hf(<i>t</i>) values (6.6–14.1), coupled with their geochemical characteristics, suggest that the provenance of investigated granitoids were most likely to be dominated by juvenile crustal materials. Based on these new data and previous studies, we propose three stages of tectonic evolution during the Late Palaeozoic–Early Mesozoic in the XMOB: (1) Late Carboniferous–Early Permian (330–270 Ma): double-sided subduction of the Palaeo-Asian Ocean; (2) Middle Permian–Middle Triassic (270–237 Ma): the closure of the Palaeo-Asian Ocean and subsequent continent–continent collision between the North China Craton and the South Mongolia Terrane; and (3) Late Triassic (237–211 Ma): post-collisional extension.</p

    Provenance of the Langjiexue Group to the south of the Yarlung-Tsangpo Suture Zone in southeastern Tibet: Insights on the evolution of the Neo-Tethys Ocean in the Late Triassic

    No full text
    <p>The Upper Triassic Langjiexue Group, which lies immediately south of the Yarlung-Tsangpo Suture Zone in the Shannan area of southeastern Tibet, represents an important part of the Tethyan Himalayan Sequence (THS). Its provenance and palaeogeography have been the subject of debate. We present new data on petrographic composition, whole-rock geochemistry, and detrital zircon U–Pb geochronology to constrain the provenance of the Langjiexue Group. The dominance of quartz grains and felsic volcanic lithic fragments suggests that the sandstones are litho-quartzose. The trace element geochemical signatures (V–Ni–Th*10, Co/Th–La/Sc, Eu/Eu*–Th/Sc) suggest derivation from felsic igneous sources. The detrital zircon age spectra display three major peaks: a Meso-to-Neoproterozoic peak (1200–900 Ma, 7–18%), a Neoproterozoic-to-Late Cambrian peak (750–500 Ma, 32–65%), and a Late Carboniferous-to-Late Triassic peak (300–200 Ma, 11–33%). The maximum depositional age of early Carnian (236–235 Ma) is obtained by calculating weighted average ages of the youngest zircons (≤250 Ma). The youngest age cluster (300–200 Ma) is incompatible with sources from neighbouring terranes, including the South Qiangtang terrane, Lhasa terrane, THS, and Higher Himalayan Crystalline. Correlations of the Permian–Triassic zircons with those of time-equivalent strata in northwest Australia, west Burma, and the Banda Arc unveil a potential connection to the Tasmanides along the convergent margin of eastern Australia. The New England Orogen (300–230 Ma) could have supplied the Langjiexue Group with magmatic materials via continent-scale drainage systems or a submarine fan complex. This scenario provides a new perspective into the transport of detritus from distal orogens to sedimentary basins thousands of kilometres away.</p
    corecore