3,669 research outputs found

    Attention Deficit Hyperactivity Disorder comorbid oppositional defiant disorder and its predominately inattentive type: evidence for an association with COMT but not MAOA in a Chinese sample

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>There are three childhood disruptive behavior disorders (DBDs), attention deficit hyperactivity disorder (ADHD), oppositional defiant disorder (ODD), and conduct disorder (CD). The most common comorbid disorder in ADHD is ODD. DSM-IV describes three ADHD subtypes: predominantly inattentive type (ADHD-IA), predominantly hyperactive-impulsive type (ADHD-HI), and combined type (ADHD-C). Prior work suggests that specific candidate genes are associated with specific subtypes of ADHD in China. Our previous association studies between ADHD and functional polymorphisms of COMT and MAOA, consistently showed the low transcriptional activity alleles were preferentially transmitted to ADHD-IA boys. Thus, the goal of the present study is to test the hypothesis that COMT Val158Met and MAOA-uVNTR jointly contribute to the ODD phenotype among Chinese ADHD boys.</p> <p>Methods</p> <p>171 Chinese boys between 6 and 17.5 years old (mean = 10.3, SD = 2.6) with complete COMT val158met and MAOA-uVNTR genotyping information were studied. We used logistic regression with genotypes as independent variables and the binary phenotype as the dependent variable. We used p < 0.05 as the level of nominal statistical significance. Bonferroni correction procedures were used to adjust for multiple comparisons.</p> <p>Results</p> <p>Our results highlight the potential etiologic role of COMT in the ADHD with comorbid ODD and its predominately inattentive type in male Chinese subjects. ADHD with comorbid ODD was associated with homozygosity of the high-activity Val allele, while the predominantly inattentive ADHD subtype was associated with the low-activity Met allele. We found no evidence of association between the MAOA-uVNTR variant and ADHD with comorbid ODD or the ADHD-IA subtype.</p> <p>Conclusion</p> <p>Our study of attention deficit hyperactivity disorder comorbid oppositional defiant disorder and its predominately inattentive type highlights the potential etiologic role of COMT for ADHD children in China. But we failed to observe an interaction between COMT and MAOA, which suggests that epistasis between COMT and MAOA genes does not influence the phenotype of ADHD-IA with comorbid ODD in a clinical sample of Chinese male subjects. To confirm our findings further studies with a larger number of subjects and healthy controls are needed.</p

    Incommensurate itinerant antiferromagnetic excitations and spin resonance in the FeTe0.6_{0.6}Se0.4_{0.4} superconductor

    Full text link
    We report on inelastic neutron scattering measurements that find incommensurate itinerant like magnetic excitations in the normal state of superconducting FeTe0.6_{0.6}Se0.4_{0.4} (\Tc=14K) at wave-vector Qinc=(1/2±ϵ,1/2ϵ)\mathbf{Q}_{inc}=(1/2\pm\epsilon,1/2\mp\epsilon) with ϵ\epsilon=0.09(1). In the superconducting state only the lower energy part of the spectrum shows significant changes by the formation of a gap and a magnetic resonance that follows the dispersion of the normal state excitations. We use a four band model to describe the Fermi surface topology of iron-based superconductors with the extended s(±)s(\pm) symmetry and find that it qualitatively captures the salient features of these data.Comment: 7 pages and 5 figure

    Learning to Generate SAR Images with Adversarial Autoencoder

    Get PDF
    Deep learning-based synthetic aperture radar (SAR) target recognition often suffers from sparsely distributed training samples and rapid angular variations due to scattering scintillation. Thus, data-driven SAR target recognition is considered a typical few-shot learning (FSL) task. This paper first reviews the key issues of FSL and provides a definition of the FSL task. A novel adversarial autoencoder (AAE) is then proposed as a SAR representation and generation network. It consists of a generator network that decodes target knowledge to SAR images and an adversarial discriminator network that not only learns to discriminate “fake” generated images from real ones but also encodes the input SAR image back to a target knowledge. The discriminator employs progressively expanding convolution layers and a corresponding layer-by-layer training strategy. It uses two cyclic loss functions to enforce consistency between the inputs and outputs. Moreover, rotated cropping is introduced as a mechanism to address the challenge of representing the target orientation. The MSTAR 7-target dataset is used to evaluate the AAE’s performance, and the results demonstrate its ability to generate SAR images with aspect angular diversity. Using only 90 training samples with at least 25 degrees of orientation interval, the trained AAE is able to generate the remaining 1,748 samples of other orientation angles with an unprecedented level of fidelity. Thus, it can be used for data augmentation in SAR target recognition FSL tasks. Our experimental results show that the AAE could boost the test accuracy by 5.77%

    Spin Gap and Resonance at the Nesting Wavevector in Superconducting FeSe0.4Te0.6

    Get PDF
    Neutron scattering is used to probe magnetic excitations in FeSe_{0.4}Te_{0.6} (T_c=14 K). Low energy spin fluctuations are found with a characteristic wave vector (0.5,0.5,L)(0.5,0.5,L) that corresponds to Fermi surface nesting and differs from Q_m=(\delta,0,0.5) for magnetic ordering in Fe_{1+y}Te. A spin resonance with \hbar\Omega_0=6.5 meV \approx 5.3 k_BT_c and \hbar\Gamma=1.25 meV develops in the superconducting state from a normal state continuum. We show that the resonance is consistent with a bound state associated with s+/- superconductivity and imperfect quasi-2D Fermi surface nesting.Comment: 4 pages, 4 figures, Submitted to Phys. Rev. Let

    The volatile anesthetic isoflurane differentially inhibits voltage-gated sodium channel currents between pyramidal and parvalbumin neurons in the prefrontal cortex

    Get PDF
    BackgroundHow volatile anesthetics work remains poorly understood. Modulations of synaptic neurotransmission are the direct cellular mechanisms of volatile anesthetics in the central nervous system. Volatile anesthetics such as isoflurane may reduce neuronal interaction by differentially inhibiting neurotransmission between GABAergic and glutamatergic synapses. Presynaptic voltage-dependent sodium channels (Nav), which are strictly coupled with synaptic vesicle exocytosis, are inhibited by volatile anesthetics and may contribute to the selectivity of isoflurane between GABAergic and glutamatergic synapses. However, it is still unknown how isoflurane at clinical concentrations differentially modulates Nav currents between excitatory and inhibitory neurons at the tissue level.MethodsIn this study, an electrophysiological recording was applied in cortex slices to investigate the effects of isoflurane on Nav between parvalbumin (PV+) and pyramidal neurons in PV-cre-tdTomato and/or vglut2-cre-tdTomato mice.ResultsIsoflurane at clinically relevant concentrations produced a hyperpolarizing shift in the voltage-dependent inactivation and slowed the recovery time from the fast inactivation in both cellular subtypes. Since the voltage of half-maximal inactivation was significantly depolarized in PV+ neurons compared to that of pyramidal neurons, isoflurane inhibited the peak Nav currents in pyramidal neurons more potently than those of PV+ neurons (35.95 ± 13.32% vs. 19.24 ± 16.04%, P = 0.036 by the Mann-Whitney test).ConclusionsIsoflurane differentially inhibits Nav currents between pyramidal and PV+ neurons in the prefrontal cortex, which may contribute to the preferential suppression of glutamate release over GABA release, resulting in the net depression of excitatory-inhibitory circuits in the prefrontal cortex

    Spin-Fluctuation-Induced Non-Fermi-Liquid Behavior with suppressed superconductivity in LiFe1x_{1-x}Cox_{x}As

    Full text link
    A series of LiFe1x_{1-x}Cox_{x}As compounds with different Co concentrations have been studied by transport, optical spectroscopy, angle-resolved photoemission spectroscopy and nuclear magnetic resonance. We observed a Fermi liquid to non-Fermi liquid to Fermi liquid (FL-NFL-FL) crossover alongside a monotonic suppression of the superconductivity with increasing Co content. In parallel to the FL-NFL-FL crossover, we found that both the low-energy spin fluctuations and Fermi surface nesting are enhanced and then diminished, strongly suggesting that the NFL behavior in LiFe1x_{1-x}Cox_{x}As is induced by low-energy spin fluctuations which are very likely tuned by Fermi surface nesting. Our study reveals a unique phase diagram of LiFe1x_{1-x}Cox_{x}As where the region of NFL is moved to the boundary of the superconducting phase, implying that they are probably governed by different mechanisms.Comment: 10 pages, 11 figure

    Potentially Functional Variants of PLCE1 Identified by GWASs Contribute to Gastric Adenocarcinoma Susceptibility in an Eastern Chinese Population

    Get PDF
    BACKGROUND: Recent genome-wide association studies (GWAS) have found a single nucleotide polymorphism (SNP, rs2274223 A>G) in PLCE1 to be associated with risk of gastric adenocarcinoma. In the present study, we validated this finding and also explored the risk associated with another unreported potentially functional SNP (rs11187870 G>C) of PLCE1 in a hospital-based case-control study of 1059 patients with pathologically confirmed gastric adenocarcinoma and 1240 frequency-matched healthy controls. METHODOLOGY/PRINCIPAL FINDINGS: We determined genotypes of these two SNPs by the Taqman assay and used logistic regression models to estimate odds ratios (ORs) and 95% confidence intervals (95% CI). We found that a significant higher gastric adenocarcinoma risk was associated with rs2274223 variant G allele (adjusted OR = 1.35, 95% CI = 1.14-1.60 for AG+GG vs. AA) and rs11187870 variant C allele (adjusted OR = 1.26, 95% CI = 1.05-1.50 for CG+CC vs. GG). We also found that the number of combined risk alleles (i.e., rs2274223G and rs11187870C) was associated with risk of gastric adenocarcinoma in an allele-dose effect manner (P(trend) = 0.0002). Stratification analysis indicated that the combined effect of rs2274223G and rs11187870C variant alleles was more evident in subgroups of males, non-smokers, non-drinkers and patients with gastric cardia adenocarcinoma. Further real-time PCR results showed that expression levels of PLCE1 mRNA were significantly lower in tumors than in adjacent noncancerous tissues (0.019±0.002 vs. 0.008±0.001, P<0.05). CONCLUSIONS/SIGNIFICANCES: Our results further confirmed that genetic variations in PLCE1 may contribute to gastric adenocarcinoma risk in an eastern Chinese population
    corecore