98 research outputs found

    SeCo: Exploring Sequence Supervision for Unsupervised Representation Learning

    Full text link
    A steady momentum of innovations and breakthroughs has convincingly pushed the limits of unsupervised image representation learning. Compared to static 2D images, video has one more dimension (time). The inherent supervision existing in such sequential structure offers a fertile ground for building unsupervised learning models. In this paper, we compose a trilogy of exploring the basic and generic supervision in the sequence from spatial, spatiotemporal and sequential perspectives. We materialize the supervisory signals through determining whether a pair of samples is from one frame or from one video, and whether a triplet of samples is in the correct temporal order. We uniquely regard the signals as the foundation in contrastive learning and derive a particular form named Sequence Contrastive Learning (SeCo). SeCo shows superior results under the linear protocol on action recognition (Kinetics), untrimmed activity recognition (ActivityNet) and object tracking (OTB-100). More remarkably, SeCo demonstrates considerable improvements over recent unsupervised pre-training techniques, and leads the accuracy by 2.96% and 6.47% against fully-supervised ImageNet pre-training in action recognition task on UCF101 and HMDB51, respectively. Source code is available at \url{https://github.com/YihengZhang-CV/SeCo-Sequence-Contrastive-Learning}.Comment: AAAI 2021; Code is publicly available at: https://github.com/YihengZhang-CV/SeCo-Sequence-Contrastive-Learnin

    Cortical hierarchy disorganization in major depressive disorder and its association with suicidality

    Get PDF
    ObjectivesTo explore the suicide risk-specific disruption of cortical hierarchy in major depressive disorder (MDD) patients with diverse suicide risks.MethodsNinety-two MDD patients with diverse suicide risks and 38 matched controls underwent resting-state functional MRI. Connectome gradient analysis and stepwise functional connectivity (SFC) analysis were used to characterize the suicide risk-specific alterations of cortical hierarchy in MDD patients.ResultsRelative to controls, patients with suicide attempts (SA) had a prominent compression from the sensorimotor system; patients with suicide ideations (SI) had a prominent compression from the higher-level systems; non-suicide patients had a compression from both the sensorimotor system and higher-level systems, although it was less prominent relative to SA and SI patients. SFC analysis further validated this depolarization phenomenon.ConclusionThis study revealed MDD patients had suicide risk-specific disruptions of cortical hierarchy, which advance our understanding of the neuromechanisms of suicidality in MDD patients

    Preparation, biological characterization and preliminary human imaging studies of 68Ga-DOTA-IBA

    Get PDF
    PurposeIn this study, DOTA-IBA was radiolabeled with 68Ga and we determined the optimum labelling conditions and assessed the biological properties of 68Ga-DOTA-IBA. We investigated the biodistribution of 68Ga-DOTA-IBA in normal animals and undertook PET/CT imaging in humans. Finally, we explored the feasibility 68Ga-DOTA-IBA as a bone imaging agent and demonstrated its potential for the therapeutic release of 177Lu/225Ac-DOTA-IBA.MethodsThe controlled variables method was used to assess the impact of variables on the radiochemical purity of 68Ga-DOTA-IBA. The biological properties of 68Ga-DOTA-IBA were investigated.68Ga-DOTA-IBA micro-PET/CT imaging was performed on animals. Volunteers were recruited for 68Ga-DOTA-IBA imaging and data were compared to 99mTc-MDP imaging studies to calculate the target to non-target ratio (T/NT) of the lesions.ResultsThe prepared 68Ga-DOTA-IBA had a radiochemical purity of >97% and demonstrated good biological properties with a good safety profile in normal mice. PET/CT imaging of the animals showed rapid blood clearance with high contrast between the bone and stroma. Human imaging showed that 68Ga-DOTA-IBA could detect more lesions compared to 99mTc-MDP and had a higher targeted to untargeted ratio.Conclusions68Ga-DOTA-IBA is an osteophilic radiopharmaceutical that can be synthesized using a simple labelling method. 68Ga-DOTA-IBA has high radiochemical purity and is stable in vitro stability. It is rapidly cleared from the blood, has low toxicity and has strong targeting to the bone with long retention times. We also found that it is rapidly cleared in non-target tissues and has high contrast on whole-body bone imaging. 68Ga-DOTA-IBA PET/CT has potential as a novel bone imaging bone modality in patients with metastatic disease

    Sublytic C5b-9 Induces Glomerular Mesangial Cell Apoptosis Through miR-3546/SOX4/Survivin Axis in Rat Thy-1 Nephritis

    Get PDF
    Background/Aims: The activation of complement system and the formation of C5b-9 complex have been confirmed in the glomeruli of patients with mesangioproliferative glomerulonephritis (MsPGN). However, the role and mechanism of C5b-9-induced injury in glomerular mesangial cell (GMC) are poorly understood. Rat Thy-1N is an animal model for studying MsPGN. It has been revealed that the attack of C5b-9 to the GMC in rat Thy-1N is sublytic, and sublytic C5b-9 can cause GMC apoptosis, but the underlying mechanism is not fully elucidated. To explore the role and regulatory mechanism of C5b-9 in MsPGN lesion, we used rat Thy-1N model and first detected the change of microRNA (miRNA) profiles both in Thy-1N rat renal tissues (in vivo) and in the cultured GMCs with sublytic C5b-9 stimulation (in vitro). Then we determined the effect of miR-3546, which increased both in vivo and in vitro, on GMC apoptosis upon sublytic C5b-9 as well as the involved mechanism. Methods: Rat Thy-1N model was established and GMCs were treated with sublytic C5b-9. The rat renal cortex and the stimulated GMCs were obtained for miRNA microarray detection. Subsequently, the increased miRNAs were verified by real-time PCR. Meanwhile, to ascertain the ability of some miRNAs to upregulate cleaved caspase 3 and induce GMC apoptosis, the corresponding miRNA mimics were transfected into GMCs, followed by western blotting (WB) and flow cytometry mesurement. Thereafter, the miR-3546-targeted gene (SOX4) was predicted using bioinformatics approaches, and SOX4 expression in Thy-1N tissues and in the GMCs upon sublytic C5b-9 stimulation or miR-3546 mimic/inhibitor transfection were detected using real-time PCR and WB. To prove that miR-3546 can affect SOX4 gene transcription and SOX4 can regulate survivin expression, dual luciferase reporter assay, real-time PCR, WB and chromatin immunoprecipitation (ChIP) assays were performed. Furthermore, the role of miR-3546/SOX4/survivin axis in the GMC apoptosis induced by sublytic C5b-9 was examined using WB and flow cytometry. Results: Compared with normal renal tissues and untreated GMCs, there were 43 and 62 upregulated miRNAs (> 2-fold) in Thy-1N tissues and sublytic C5b-9-stimulated GMCs respectively. A total of 17 miRNAs were increased both in vivo and in vitro, 11 of which were validated by real-time PCR. Among them, miR-3546 could markedly promote GMC apoptosis and inhibit SOX4 or survivin expression in response to sublytic C5b-9, and either SOX4 or survivin overexpression markedly rescued the GMC apoptosis mediated by miR-3546 mimic. Additionally, SOX4 overexpression could reverse the survivin suppression by miR-3546 mimic, and SOX4 could bind to survivin promoter (-1,278 to -853 nt) and activate survivin gene transcription. Conclusion: MiR-3546/ SOX4/survivin axis has a promoting role in the GMC apoptosis triggered by sublytic C5b-9, and our findings may provide a new insight into the pathogenesis of rat Thy-1N and human MsPGN

    Genome-wide characterization and analysis of Golden 2-Like transcription factors related to leaf chlorophyll synthesis in diploid and triploid Eucalyptus urophylla

    Get PDF
    Golden 2-Like (GLK) transcription factors play a crucial role in chloroplast development and chlorophyll synthesis in many plant taxa. To date, no systematic analysis of GLK transcription factors in tree species has been conducted. In this study, 40 EgrGLK genes in the Eucalyptus grandis genome were identified and divided into seven groups based on the gene structure and motif composition. The EgrGLK genes were mapped to 11 chromosomes and the distribution of genes on chromosome was uneven. Phylogenetic analysis of GLK proteins between E. grandis and other species provided information for the high evolutionary conservation of GLK genes among different species. Prediction of cis-regulatory elements indicated that the EgrGLK genes were involved in development, light response, and hormone response. Based on the finding that the content of chlorophyll in mature leaves was the highest, and leaf chlorophyll content of triploid Eucalyptus urophylla was higher than that of the diploid control, EgrGLK expression pattern in leaves of triploid and diploid E. urophylla was examined by means of transcriptome analysis. Differential expression of EgrGLK genes in leaves of E. urophylla of different ploidies was consistent with the trend in chlorophyll content. To further explore the relationship between EgrGLK expression and chlorophyll synthesis, co-expression networks were generated, which indicated that EgrGLK genes may have a positive regulatory relationship with chlorophyll synthesis. In addition, three EgrGLK genes that may play an important role in chlorophyll synthesis were identified in the co-expression networks. And the prediction of miRNAs targeting EgrGLK genes showed that miRNAs might play an important role in the regulation of EgrGLK gene expression. This research provides valuable information for further functional characterization of GLK genes in Eucalyptus
    corecore